mmpretrain/tests/test_models/test_backbones/test_timm_backbone.py

60 lines
1.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch import nn
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import TIMMBackbone
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_timm_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = TIMMBackbone()
model.init_weights(pretrained=0)
# Test resnet18 from timm
model = TIMMBackbone(model_name='resnet18')
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
assert isinstance(model.timm_model.global_pool.pool, nn.Identity)
assert isinstance(model.timm_model.fc, nn.Identity)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size((1, 512, 7, 7))
# Test efficientnet_b1 with pretrained weights
model = TIMMBackbone(model_name='efficientnet_b1', pretrained=True)
model.init_weights()
model.train()
assert isinstance(model.timm_model.global_pool.pool, nn.Identity)
assert isinstance(model.timm_model.classifier, nn.Identity)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size((1, 1280, 7, 7))
# Test vit_tiny_patch16_224 with pretrained weights
model = TIMMBackbone(model_name='vit_tiny_patch16_224', pretrained=True)
model.init_weights()
model.train()
assert isinstance(model.timm_model.head, nn.Identity)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size((1, 192))