mmpretrain/tools/visualizations/vis_cam.py

357 lines
13 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import math
import pkg_resources
import re
from pathlib import Path
import mmcv
import numpy as np
from mmengine.config import Config, DictAction
from mmcv.utils import to_2tuple
from torch.nn import BatchNorm1d, BatchNorm2d, GroupNorm, LayerNorm
from mmcls import digit_version
from mmcls.apis import init_model
from mmcls.datasets.pipelines import Compose
try:
from pytorch_grad_cam import (EigenCAM, EigenGradCAM, GradCAM,
GradCAMPlusPlus, LayerCAM, XGradCAM)
from pytorch_grad_cam.activations_and_gradients import \
ActivationsAndGradients
from pytorch_grad_cam.utils.image import show_cam_on_image
except ImportError:
raise ImportError('Please run `pip install "grad-cam>=1.3.6"` to install '
'3rd party package pytorch_grad_cam.')
# set of transforms, which just change data format, not change the pictures
FORMAT_TRANSFORMS_SET = {'ToTensor', 'Normalize', 'ImageToTensor', 'Collect'}
# Supported grad-cam type map
METHOD_MAP = {
'gradcam': GradCAM,
'gradcam++': GradCAMPlusPlus,
'xgradcam': XGradCAM,
'eigencam': EigenCAM,
'eigengradcam': EigenGradCAM,
'layercam': LayerCAM,
}
def parse_args():
parser = argparse.ArgumentParser(description='Visualize CAM')
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--target-layers',
default=[],
nargs='+',
type=str,
help='The target layers to get CAM, if not set, the tool will '
'specify the norm layer in the last block. Backbones '
'implemented by users are recommended to manually specify'
' target layers in commmad statement.')
parser.add_argument(
'--preview-model',
default=False,
action='store_true',
help='To preview all the model layers')
parser.add_argument(
'--method',
default='GradCAM',
help='Type of method to use, supports '
f'{", ".join(list(METHOD_MAP.keys()))}.')
parser.add_argument(
'--target-category',
default=[],
nargs='+',
type=int,
help='The target category to get CAM, default to use result '
'get from given model.')
parser.add_argument(
'--eigen-smooth',
default=False,
action='store_true',
help='Reduce noise by taking the first principle componenet of '
'``cam_weights*activations``')
parser.add_argument(
'--aug-smooth',
default=False,
action='store_true',
help='Wether to use test time augmentation, default not to use')
parser.add_argument(
'--save-path',
type=Path,
help='The path to save visualize cam image, default not to save.')
parser.add_argument('--device', default='cpu', help='Device to use cpu')
parser.add_argument(
'--vit-like',
action='store_true',
help='Whether the network is a ViT-like network.')
parser.add_argument(
'--num-extra-tokens',
type=int,
help='The number of extra tokens in ViT-like backbones. Defaults to'
' use num_extra_tokens of the backbone.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
if args.method.lower() not in METHOD_MAP.keys():
raise ValueError(f'invalid CAM type {args.method},'
f' supports {", ".join(list(METHOD_MAP.keys()))}.')
return args
def build_reshape_transform(model, args):
"""Build reshape_transform for `cam.activations_and_grads`, which is
necessary for ViT-like networks."""
# ViT_based_Transformers have an additional clstoken in features
if not args.vit_like:
def check_shape(tensor):
assert len(tensor.size()) != 3, \
(f"The input feature's shape is {tensor.size()}, and it seems "
'to have been flattened or from a vit-like network. '
"Please use `--vit-like` if it's from a vit-like network.")
return tensor
return check_shape
if args.num_extra_tokens is not None:
num_extra_tokens = args.num_extra_tokens
elif hasattr(model.backbone, 'num_extra_tokens'):
num_extra_tokens = model.backbone.num_extra_tokens
else:
num_extra_tokens = 1
def _reshape_transform(tensor):
"""reshape_transform helper."""
assert len(tensor.size()) == 3, \
(f"The input feature's shape is {tensor.size()}, "
'and the feature seems not from a vit-like network?')
tensor = tensor[:, num_extra_tokens:, :]
# get heat_map_height and heat_map_width, preset input is a square
heat_map_area = tensor.size()[1]
height, width = to_2tuple(int(math.sqrt(heat_map_area)))
assert height * height == heat_map_area, \
(f"The input feature's length ({heat_map_area+num_extra_tokens}) "
f'minus num-extra-tokens ({num_extra_tokens}) is {heat_map_area},'
' which is not a perfect square number. Please check if you used '
'a wrong num-extra-tokens.')
result = tensor.reshape(tensor.size(0), height, width, tensor.size(2))
# Bring the channels to the first dimension, like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
return _reshape_transform
def apply_transforms(img_path, pipeline_cfg):
"""Apply transforms pipeline and get both formatted data and the image
without formatting."""
data = dict(img_info=dict(filename=img_path), img_prefix=None)
def split_pipeline_cfg(pipeline_cfg):
"""to split the transfoms into image_transforms and
format_transforms."""
image_transforms_cfg, format_transforms_cfg = [], []
if pipeline_cfg[0]['type'] != 'LoadImageFromFile':
pipeline_cfg.insert(0, dict(type='LoadImageFromFile'))
for transform in pipeline_cfg:
if transform['type'] in FORMAT_TRANSFORMS_SET:
format_transforms_cfg.append(transform)
else:
image_transforms_cfg.append(transform)
return image_transforms_cfg, format_transforms_cfg
image_transforms, format_transforms = split_pipeline_cfg(pipeline_cfg)
image_transforms = Compose(image_transforms)
format_transforms = Compose(format_transforms)
intermediate_data = image_transforms(data)
inference_img = copy.deepcopy(intermediate_data['img'])
format_data = format_transforms(intermediate_data)
return format_data, inference_img
class MMActivationsAndGradients(ActivationsAndGradients):
"""Activations and gradients manager for mmcls models."""
def __call__(self, x):
self.gradients = []
self.activations = []
return self.model(
x, return_loss=False, softmax=False, post_process=False)
def init_cam(method, model, target_layers, use_cuda, reshape_transform):
"""Construct the CAM object once, In order to be compatible with mmcls,
here we modify the ActivationsAndGradients object."""
GradCAM_Class = METHOD_MAP[method.lower()]
cam = GradCAM_Class(
model=model, target_layers=target_layers, use_cuda=use_cuda)
# Release the original hooks in ActivationsAndGradients to use
# MMActivationsAndGradients.
cam.activations_and_grads.release()
cam.activations_and_grads = MMActivationsAndGradients(
cam.model, cam.target_layers, reshape_transform)
return cam
def get_layer(layer_str, model):
"""get model layer from given str."""
cur_layer = model
layer_names = layer_str.strip().split('.')
def get_children_by_name(model, name):
try:
return getattr(model, name)
except AttributeError as e:
raise AttributeError(
e.args[0] +
'. Please use `--preview-model` to check keys at first.')
def get_children_by_eval(model, name):
try:
return eval(f'model{name}', {}, {'model': model})
except (AttributeError, IndexError) as e:
raise AttributeError(
e.args[0] +
'. Please use `--preview-model` to check keys at first.')
for layer_name in layer_names:
match_res = re.match('(?P<name>.+?)(?P<indices>(\\[.+\\])+)',
layer_name)
if match_res:
layer_name = match_res.groupdict()['name']
indices = match_res.groupdict()['indices']
cur_layer = get_children_by_name(cur_layer, layer_name)
cur_layer = get_children_by_eval(cur_layer, indices)
else:
cur_layer = get_children_by_name(cur_layer, layer_name)
return cur_layer
def show_cam_grad(grayscale_cam, src_img, title, out_path=None):
"""fuse src_img and grayscale_cam and show or save."""
grayscale_cam = grayscale_cam[0, :]
src_img = np.float32(src_img) / 255
visualization_img = show_cam_on_image(
src_img, grayscale_cam, use_rgb=False)
if out_path:
mmcv.imwrite(visualization_img, str(out_path))
else:
mmcv.imshow(visualization_img, win_name=title)
def get_default_traget_layers(model, args):
"""get default target layers from given model, here choose nrom type layer
as default target layer."""
norm_layers = []
for m in model.backbone.modules():
if isinstance(m, (BatchNorm2d, LayerNorm, GroupNorm, BatchNorm1d)):
norm_layers.append(m)
if len(norm_layers) == 0:
raise ValueError(
'`--target-layers` is empty. Please use `--preview-model`'
' to check keys at first and then specify `target-layers`.')
# if the model is CNN model or Swin model, just use the last norm
# layer as the target-layer, if the model is ViT model, the final
# classification is done on the class token computed in the last
# attention block, the output will not be affected by the 14x14
# channels in the last layer. The gradient of the output with
# respect to them, will be 0! here use the last 3rd norm layer.
# means the first norm of the last decoder block.
if args.vit_like:
if args.num_extra_tokens:
num_extra_tokens = args.num_extra_tokens
elif hasattr(model.backbone, 'num_extra_tokens'):
num_extra_tokens = model.backbone.num_extra_tokens
else:
raise AttributeError('Please set num_extra_tokens in backbone'
" or using 'num-extra-tokens'")
# if a vit-like backbone's num_extra_tokens bigger than 0, view it
# as a VisionTransformer backbone, eg. DeiT, T2T-ViT.
if num_extra_tokens >= 1:
print('Automatically choose the last norm layer before the '
'final attention block as target_layer..')
return [norm_layers[-3]]
print('Automatically choose the last norm layer as target_layer.')
target_layers = [norm_layers[-1]]
return target_layers
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# build the model from a config file and a checkpoint file
model = init_model(cfg, args.checkpoint, device=args.device)
if args.preview_model:
print(model)
print('\n Please remove `--preview-model` to get the CAM.')
return
# apply transform and perpare data
data, src_img = apply_transforms(args.img, cfg.data.test.pipeline)
# build target layers
if args.target_layers:
target_layers = [
get_layer(layer, model) for layer in args.target_layers
]
else:
target_layers = get_default_traget_layers(model, args)
# init a cam grad calculator
use_cuda = ('cuda' in args.device)
reshape_transform = build_reshape_transform(model, args)
cam = init_cam(args.method, model, target_layers, use_cuda,
reshape_transform)
# warp the target_category with ClassifierOutputTarget in grad_cam>=1.3.7,
# to fix the bug in #654.
targets = None
if args.target_category:
grad_cam_v = pkg_resources.get_distribution('grad_cam').version
if digit_version(grad_cam_v) >= digit_version('1.3.7'):
from pytorch_grad_cam.utils.model_targets import \
ClassifierOutputTarget
targets = [ClassifierOutputTarget(c) for c in args.target_category]
else:
targets = args.target_category
# calculate cam grads and show|save the visualization image
grayscale_cam = cam(
data['img'].unsqueeze(0),
targets,
eigen_smooth=args.eigen_smooth,
aug_smooth=args.aug_smooth)
show_cam_grad(
grayscale_cam, src_img, title=args.method, out_path=args.save_path)
if __name__ == '__main__':
main()