mmpretrain/tools/visualizations/vis_lr.py

335 lines
11 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import re
import time
from pathlib import Path
from pprint import pformat
import matplotlib.pyplot as plt
import mmcv
import torch.nn as nn
from mmengine.config import Config, DictAction, ProgressBar
from mmcv.runner import (EpochBasedRunner, IterBasedRunner, IterLoader,
build_optimizer)
from torch.utils.data import DataLoader
from mmcls.utils import get_root_logger
class DummyEpochBasedRunner(EpochBasedRunner):
"""Fake Epoch-based Runner.
This runner won't train model, and it will only call hooks and return all
learning rate in each iteration.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.progress_bar = ProgressBar(self._max_epochs, start=False)
def train(self, data_loader, **kwargs):
lr_list = []
self.model.train()
self.mode = 'train'
self.data_loader = data_loader
self._max_iters = self._max_epochs * len(self.data_loader)
self.call_hook('before_train_epoch')
for i in range(len(self.data_loader)):
self._inner_iter = i
self.call_hook('before_train_iter')
lr_list.append(self.current_lr())
self.call_hook('after_train_iter')
self._iter += 1
self.call_hook('after_train_epoch')
self._epoch += 1
self.progress_bar.update(1)
return lr_list
def run(self, data_loaders, workflow, **kwargs):
assert isinstance(data_loaders, list)
assert mmcv.is_list_of(workflow, tuple)
assert len(data_loaders) == len(workflow)
assert self._max_epochs is not None, (
'max_epochs must be specified during instantiation')
for i, flow in enumerate(workflow):
mode, epochs = flow
if mode == 'train':
self._max_iters = self._max_epochs * len(data_loaders[i])
break
self.logger.info('workflow: %s, max: %d epochs', workflow,
self._max_epochs)
self.call_hook('before_run')
self.progress_bar.start()
lr_list = []
while self.epoch < self._max_epochs:
for i, flow in enumerate(workflow):
mode, epochs = flow
if isinstance(mode, str): # self.train()
if not hasattr(self, mode):
raise ValueError(
f'runner has no method named "{mode}" to run an '
'epoch')
epoch_runner = getattr(self, mode)
else:
raise TypeError(
'mode in workflow must be a str, but got {}'.format(
type(mode)))
for _ in range(epochs):
if mode == 'train' and self.epoch >= self._max_epochs:
break
lr_list.extend(epoch_runner(data_loaders[i], **kwargs))
self.progress_bar.file.write('\n')
time.sleep(1) # wait for some hooks like loggers to finish
self.call_hook('after_run')
return lr_list
class DummyIterBasedRunner(IterBasedRunner):
"""Fake Iter-based Runner.
This runner won't train model, and it will only call hooks and return all
learning rate in each iteration.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.progress_bar = ProgressBar(self._max_iters, start=False)
def train(self, data_loader, **kwargs):
lr_list = []
self.model.train()
self.mode = 'train'
self.data_loader = data_loader
self._epoch = data_loader.epoch
next(data_loader)
self.call_hook('before_train_iter')
lr_list.append(self.current_lr())
self.call_hook('after_train_iter')
self._inner_iter += 1
self._iter += 1
self.progress_bar.update(1)
return lr_list
def run(self, data_loaders, workflow, **kwargs):
assert isinstance(data_loaders, list)
assert mmcv.is_list_of(workflow, tuple)
assert len(data_loaders) == len(workflow)
assert self._max_iters is not None, (
'max_iters must be specified during instantiation')
self.logger.info('workflow: %s, max: %d iters', workflow,
self._max_iters)
self.call_hook('before_run')
iter_loaders = [IterLoader(x) for x in data_loaders]
self.call_hook('before_epoch')
self.progress_bar.start()
lr_list = []
while self.iter < self._max_iters:
for i, flow in enumerate(workflow):
self._inner_iter = 0
mode, iters = flow
if not isinstance(mode, str) or not hasattr(self, mode):
raise ValueError(
'runner has no method named "{}" to run a workflow'.
format(mode))
iter_runner = getattr(self, mode)
for _ in range(iters):
if mode == 'train' and self.iter >= self._max_iters:
break
lr_list.extend(iter_runner(iter_loaders[i], **kwargs))
self.progress_bar.file.write('\n')
time.sleep(1) # wait for some hooks like loggers to finish
self.call_hook('after_epoch')
self.call_hook('after_run')
return lr_list
class SimpleModel(nn.Module):
"""simple model that do nothing in train_step."""
def __init__(self):
super(SimpleModel, self).__init__()
self.conv = nn.Conv2d(1, 1, 1)
def train_step(self, *args, **kwargs):
pass
def parse_args():
parser = argparse.ArgumentParser(
description='Visualize a Dataset Pipeline')
parser.add_argument('config', help='config file path')
parser.add_argument(
'--dataset-size',
type=int,
help='The size of the dataset. If specify, `build_dataset` will '
'be skipped and use this size as the dataset size.')
parser.add_argument(
'--ngpus',
type=int,
default=1,
help='The number of GPUs used in training.')
parser.add_argument('--title', type=str, help='title of figure')
parser.add_argument(
'--style', type=str, default='whitegrid', help='style of plt')
parser.add_argument(
'--save-path',
type=Path,
help='The learning rate curve plot save path')
parser.add_argument(
'--window-size',
default='12*7',
help='Size of the window to display images, in format of "$W*$H".')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
if args.window_size != '':
assert re.match(r'\d+\*\d+', args.window_size), \
"'window-size' must be in format 'W*H'."
return args
def plot_curve(lr_list, args, iters_per_epoch, by_epoch=True):
"""Plot learning rate vs iter graph."""
try:
import seaborn as sns
sns.set_style(args.style)
except ImportError:
print("Attention: The plot style won't be applied because 'seaborn' "
'package is not installed, please install it if you want better '
'show style.')
wind_w, wind_h = args.window_size.split('*')
wind_w, wind_h = int(wind_w), int(wind_h)
plt.figure(figsize=(wind_w, wind_h))
# if legend is None, use {filename}_{key} as legend
ax: plt.Axes = plt.subplot()
ax.plot(lr_list, linewidth=1)
if by_epoch:
ax.xaxis.tick_top()
ax.set_xlabel('Iters')
ax.xaxis.set_label_position('top')
sec_ax = ax.secondary_xaxis(
'bottom',
functions=(lambda x: x / iters_per_epoch,
lambda y: y * iters_per_epoch))
sec_ax.set_xlabel('Epochs')
# ticks = range(0, len(lr_list), iters_per_epoch)
# plt.xticks(ticks=ticks, labels=range(len(ticks)))
else:
plt.xlabel('Iters')
plt.ylabel('Learning Rate')
if args.title is None:
plt.title(f'{osp.basename(args.config)} Learning Rate curve')
else:
plt.title(args.title)
if args.save_path:
plt.savefig(args.save_path)
print(f'The learning rate graph is saved at {args.save_path}')
plt.show()
def simulate_train(data_loader, cfg, by_epoch=True):
# build logger, data_loader, model and optimizer
logger = get_root_logger()
data_loaders = [data_loader]
model = SimpleModel()
optimizer = build_optimizer(model, cfg.optimizer)
# build runner
if by_epoch:
runner = DummyEpochBasedRunner(
max_epochs=cfg.runner.max_epochs,
model=model,
optimizer=optimizer,
logger=logger)
else:
runner = DummyIterBasedRunner(
max_iters=cfg.runner.max_iters,
model=model,
optimizer=optimizer,
logger=logger)
# register hooks
runner.register_training_hooks(
lr_config=cfg.lr_config,
custom_hooks_config=cfg.get('custom_hooks', None),
)
# only use the first train workflow
workflow = cfg.workflow[:1]
assert workflow[0][0] == 'train'
return runner.run(data_loaders, cfg.workflow)
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# make sure save_root exists
if args.save_path and not args.save_path.parent.exists():
raise Exception(f'The save path is {args.save_path}, and directory '
f"'{args.save_path.parent}' do not exist.")
# init logger
logger = get_root_logger(log_level=cfg.log_level)
logger.info('Lr config : \n\n' + pformat(cfg.lr_config, sort_dicts=False) +
'\n')
by_epoch = True if cfg.runner.type == 'EpochBasedRunner' else False
# prepare data loader
batch_size = cfg.data.samples_per_gpu * args.ngpus
if args.dataset_size is None and by_epoch:
from mmcls.datasets.builder import build_dataset
dataset_size = len(build_dataset(cfg.data.train))
else:
dataset_size = args.dataset_size or batch_size
fake_dataset = list(range(dataset_size))
data_loader = DataLoader(fake_dataset, batch_size=batch_size)
dataset_info = (f'\nDataset infos:'
f'\n - Dataset size: {dataset_size}'
f'\n - Samples per GPU: {cfg.data.samples_per_gpu}'
f'\n - Number of GPUs: {args.ngpus}'
f'\n - Total batch size: {batch_size}')
if by_epoch:
dataset_info += f'\n - Iterations per epoch: {len(data_loader)}'
logger.info(dataset_info)
# simulation training process
lr_list = simulate_train(data_loader, cfg, by_epoch)
plot_curve(lr_list, args, len(data_loader), by_epoch)
if __name__ == '__main__':
main()