mmpretrain/mmcls/models/utils/cutmix.py

81 lines
2.5 KiB
Python

from abc import ABCMeta, abstractmethod
import numpy as np
import torch
import torch.nn.functional as F
class BaseCutMixLayer(object, metaclass=ABCMeta):
"""Base class for CutMixLayer"""
def __init__(self):
super(BaseCutMixLayer, self).__init__()
@abstractmethod
def cutmix(self, imgs, gt_label):
pass
class BatchCutMixLayer(BaseCutMixLayer):
"""CutMix layer for batch CutMix.
Args:
alpha (float): Parameters for Beta distribution. Positive(>0).
num_classes (int): The number of classes.
cutmix_prob (float): CutMix probability. It should be in range [0, 1]
"""
def __init__(self, alpha, num_classes, cutmix_prob):
super(BatchCutMixLayer, self).__init__()
assert isinstance(alpha, float) and alpha > 0
assert isinstance(num_classes, int)
assert isinstance(cutmix_prob, float) and 0.0 <= cutmix_prob <= 1.0
self.alpha = alpha
self.num_classes = num_classes
self.cutmix_prob = cutmix_prob
def rand_bbox(self, size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def cutmix(self, img, gt_label):
r = np.random.rand(1)
if r < self.cutmix_prob:
lam = np.random.beta(self.alpha, self.alpha)
batch_size = img.size(0)
index = torch.randperm(batch_size)
one_hot_gt_label = F.one_hot(
gt_label, num_classes=self.num_classes)
bbx1, bby1, bbx2, bby2 = self.rand_bbox(img.size(), lam)
img[:, :, bbx1:bbx2, bby1:bby2] = \
img[index, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) /
(img.size(-1) * img.size(-2)))
mixed_gt_label = lam * one_hot_gt_label + (
1 - lam) * one_hot_gt_label[index, :]
return img, mixed_gt_label
else:
one_hot_gt_label = F.one_hot(
gt_label, num_classes=self.num_classes)
return img, one_hot_gt_label
def __call__(self, img, gt_label):
return self.cutmix(img, gt_label)