mmpretrain/configs/_base_/models/itpn_hivit-base-p16.py
Yixiao Fang e4c4a81b56
[Feature] Support iTPN and HiViT (#1584)
* hivit added

* Update hivit.py

* Update hivit.py

* Add files via upload

* Update __init__.py

* Add files via upload

* Update __init__.py

* Add files via upload

* Update hivit.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Update itpn.py

* Add files via upload

* Update __init__.py

* Update mae_hivit-base-p16.py

* Delete mim_itpn-base-p16.py

* Add files via upload

* Update itpn_hivit-base-p16.py

* Update itpn.py

* Update hivit.py

* Update __init__.py

* Update mae.py

* Delete hivit.py

* Update __init__.py

* Delete configs/itpn directory

* Add files via upload

* Add files via upload

* Delete configs/hivit directory

* Add files via upload

* refactor and add metafile and readme

* update clip

* add ut

* update ut

* update

* update docstring

* update model.rst

---------

Co-authored-by: 田运杰 <48153283+sunsmarterjie@users.noreply.github.com>
2023-05-26 12:08:34 +08:00

34 lines
884 B
Python

# model settings
model = dict(
type='iTPN',
backbone=dict(
type='iTPNHiViT',
arch='base',
reconstruction_type='pixel',
mask_ratio=0.75),
neck=dict(
type='iTPNPretrainDecoder',
num_patches=196,
patch_size=16,
in_chans=3,
embed_dim=512,
decoder_embed_dim=512,
decoder_depth=6,
decoder_num_heads=16,
mlp_ratio=4.,
reconstruction_type='pixel',
# transformer pyramid
fpn_dim=256,
fpn_depth=2,
num_outs=3,
),
head=dict(
type='MAEPretrainHead',
norm_pix=True,
patch_size=16,
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
init_cfg=[
dict(type='Xavier', layer='Linear', distribution='uniform'),
dict(type='Constant', layer='LayerNorm', val=1.0, bias=0.0)
])