mmpretrain/configs/_base_/datasets/voc_bs16.py

71 lines
1.9 KiB
Python

# dataset settings
dataset_type = 'VOC'
data_preprocessor = dict(
num_classes=20,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True,
# generate onehot-format labels for multi-label classification.
to_onehot=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(
batch_size=16,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/VOCdevkit/VOC2007',
image_set_path='ImageSets/Layout/val.txt',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=16,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/VOCdevkit/VOC2007',
image_set_path='ImageSets/Layout/val.txt',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
test_dataloader = dict(
batch_size=16,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='data/VOCdevkit/VOC2007',
image_set_path='ImageSets/Layout/val.txt',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# calculate precision_recall_f1 and mAP
val_evaluator = [
dict(type='VOCMultiLabelMetric'),
dict(type='VOCMultiLabelMetric', average='micro'),
dict(type='VOCAveragePrecision')
]
# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator