mmpretrain/configs/cspnet/cspdarknet50_8xb32_in1k.py

46 lines
1.2 KiB
Python

_base_ = [
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='CSPDarkNet', depth=53),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# dataset settings
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=288,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=256),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))