46 lines
1.2 KiB
Python
46 lines
1.2 KiB
Python
_base_ = [
|
|
'../_base_/datasets/imagenet_bs32.py',
|
|
'../_base_/schedules/imagenet_bs256.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(type='CSPDarkNet', depth=53),
|
|
neck=dict(type='GlobalAveragePooling'),
|
|
head=dict(
|
|
type='LinearClsHead',
|
|
num_classes=1000,
|
|
in_channels=1024,
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
))
|
|
|
|
# dataset settings
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='RandomResizedCrop',
|
|
scale=224,
|
|
backend='pillow',
|
|
interpolation='bicubic'),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(type='PackInputs'),
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='ResizeEdge',
|
|
scale=288,
|
|
edge='short',
|
|
backend='pillow',
|
|
interpolation='bicubic'),
|
|
dict(type='CenterCrop', crop_size=256),
|
|
dict(type='PackInputs'),
|
|
]
|
|
|
|
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
|
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|