47 lines
1.1 KiB
Python
47 lines
1.1 KiB
Python
_base_ = [
|
|
'../_base_/datasets/imagenet_bs64_swin_224.py',
|
|
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
|
|
'../_base_/default_runtime.py'
|
|
]
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='DistilledVisionTransformer',
|
|
arch='deit-base',
|
|
img_size=224,
|
|
patch_size=16),
|
|
neck=None,
|
|
head=dict(
|
|
type='DeiTClsHead',
|
|
num_classes=1000,
|
|
in_channels=768,
|
|
loss=dict(
|
|
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
|
|
),
|
|
init_cfg=[
|
|
dict(type='TruncNormal', layer='Linear', std=.02),
|
|
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
|
|
],
|
|
train_cfg=dict(augments=[
|
|
dict(type='Mixup', alpha=0.8),
|
|
dict(type='CutMix', alpha=1.0)
|
|
]),
|
|
)
|
|
|
|
# dataset settings
|
|
train_dataloader = dict(batch_size=64)
|
|
|
|
# schedule settings
|
|
optim_wrapper = dict(
|
|
paramwise_cfg=dict(
|
|
norm_decay_mult=0.0,
|
|
bias_decay_mult=0.0,
|
|
custom_keys={
|
|
'.cls_token': dict(decay_mult=0.0),
|
|
'.pos_embed': dict(decay_mult=0.0)
|
|
}),
|
|
clip_grad=dict(max_norm=5.0),
|
|
)
|