mmpretrain/configs/deit/deit-small-distilled_4xb256...

47 lines
1.1 KiB
Python

_base_ = [
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='DistilledVisionTransformer',
arch='deit-small',
img_size=224,
patch_size=16),
neck=None,
head=dict(
type='DeiTClsHead',
num_classes=1000,
in_channels=384,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# data settings
train_dataloader = dict(batch_size=256)
# schedule settings
optim_wrapper = dict(
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}),
clip_grad=dict(max_norm=5.0),
)