44 lines
1.1 KiB
Python
44 lines
1.1 KiB
Python
_base_ = [
|
|
'../_base_/models/efficientnet_v2/efficientnetv2_s.py',
|
|
'../_base_/datasets/imagenet_bs32.py',
|
|
'../_base_/schedules/imagenet_bs256.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# model setting
|
|
model = dict(head=dict(num_classes=21843))
|
|
|
|
# dataset settings
|
|
dataset_type = 'ImageNet21k'
|
|
data_preprocessor = dict(
|
|
num_classes=21843,
|
|
# RGB format normalization parameters
|
|
mean=[127.5, 127.5, 127.5],
|
|
std=[127.5, 127.5, 127.5],
|
|
# convert image from BGR to RGB
|
|
to_rgb=True,
|
|
)
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='EfficientNetRandomCrop', scale=224),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(type='PackInputs'),
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='EfficientNetCenterCrop', crop_size=224, crop_padding=0),
|
|
dict(type='PackInputs'),
|
|
]
|
|
|
|
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
|
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
|
|
|
# schedule setting
|
|
optim_wrapper = dict(
|
|
optimizer=dict(lr=4e-3),
|
|
clip_grad=dict(max_norm=5.0),
|
|
)
|