75 lines
1.9 KiB
Python
75 lines
1.9 KiB
Python
_base_ = [
|
|
'../../_base_/datasets/imagenet_bs64_swin_224.py',
|
|
'../../_base_/default_runtime.py',
|
|
]
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='VisionTransformer',
|
|
arch='base',
|
|
img_size=224,
|
|
patch_size=16,
|
|
drop_path_rate=0.1,
|
|
),
|
|
neck=None,
|
|
head=dict(
|
|
type='VisionTransformerClsHead',
|
|
num_classes=1000,
|
|
in_channels=768,
|
|
loss=dict(
|
|
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
|
|
init_cfg=[
|
|
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
|
|
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
|
|
]),
|
|
train_cfg=dict(augments=[
|
|
dict(type='Mixup', alpha=0.8),
|
|
dict(type='CutMix', alpha=1.0)
|
|
]))
|
|
|
|
# optimizer
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(
|
|
type='AdamW', lr=5e-4, eps=1e-8, betas=(0.9, 0.999),
|
|
weight_decay=0.05),
|
|
clip_grad=dict(max_norm=5.0),
|
|
paramwise_cfg=dict(
|
|
norm_decay_mult=0.0,
|
|
bias_decay_mult=0.0,
|
|
custom_keys={
|
|
'.cls_token': dict(decay_mult=0.0),
|
|
'.pos_embed': dict(decay_mult=0.0)
|
|
}))
|
|
|
|
# learning rate scheduler
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1e-3,
|
|
begin=0,
|
|
end=5,
|
|
convert_to_iter_based=True),
|
|
dict(
|
|
type='CosineAnnealingLR',
|
|
T_max=145,
|
|
eta_min=1e-5,
|
|
by_epoch=True,
|
|
begin=5,
|
|
end=150,
|
|
convert_to_iter_based=True)
|
|
]
|
|
|
|
# runtime settings
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=150)
|
|
val_cfg = dict()
|
|
test_cfg = dict()
|
|
|
|
default_hooks = dict(
|
|
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
|
|
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|
|
|
|
randomness = dict(seed=0)
|