mmpretrain/configs/mocov3/benchmarks/vit-base-p16_8xb64-coslr-15...

75 lines
1.9 KiB
Python

_base_ = [
'../../_base_/datasets/imagenet_bs64_swin_224.py',
'../../_base_/default_runtime.py',
]
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
drop_path_rate=0.1,
),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
]),
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW', lr=5e-4, eps=1e-8, betas=(0.9, 0.999),
weight_decay=0.05),
clip_grad=dict(max_norm=5.0),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-3,
begin=0,
end=5,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=145,
eta_min=1e-5,
by_epoch=True,
begin=5,
end=150,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=150)
val_cfg = dict()
test_cfg = dict()
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
randomness = dict(seed=0)