mmpretrain/configs/mvit/metafile.yml

96 lines
3.2 KiB
YAML

Collections:
- Name: MViT V2
Metadata:
Architecture:
- Attention Dropout
- Convolution
- Dense Connections
- GELU
- Layer Normalization
- Scaled Dot-Product Attention
- Attention Pooling
Paper:
URL: http://openaccess.thecvf.com//content/CVPR2022/papers/Li_MViTv2_Improved_Multiscale_Vision_Transformers_for_Classification_and_Detection_CVPR_2022_paper.pdf
Title: 'MViTv2: Improved Multiscale Vision Transformers for Classification and Detection'
README: configs/mvit/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.24.0/mmcls/models/backbones/mvit.py
Version: v0.24.0
Models:
- Name: mvitv2-tiny_3rdparty_in1k
In Collection: MViT V2
Metadata:
FLOPs: 4703510768
Parameters: 24173320
Training Data:
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 82.33
Top 5 Accuracy: 96.15
Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-tiny_3rdparty_in1k_20220722-db7beeef.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth
Code: https://github.com/facebookresearch/mvit
Config: configs/mvit/mvitv2-tiny_8xb256_in1k.py
- Name: mvitv2-small_3rdparty_in1k
In Collection: MViT V2
Metadata:
FLOPs: 6997555136
Parameters: 34870216
Training Data:
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 83.63
Top 5 Accuracy: 96.51
Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-small_3rdparty_in1k_20220722-986bd741.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth
Code: https://github.com/facebookresearch/mvit
Config: configs/mvit/mvitv2-small_8xb256_in1k.py
- Name: mvitv2-base_3rdparty_in1k
In Collection: MViT V2
Metadata:
FLOPs: 10157964400
Parameters: 51472744
Training Data:
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 84.34
Top 5 Accuracy: 96.86
Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-base_3rdparty_in1k_20220722-9c4f0a17.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth
Code: https://github.com/facebookresearch/mvit
Config: configs/mvit/mvitv2-base_8xb256_in1k.py
- Name: mvitv2-large_3rdparty_in1k
In Collection: MViT V2
Metadata:
FLOPs: 43868151412
Parameters: 217992952
Training Data:
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 85.25
Top 5 Accuracy: 97.14
Weights: https://download.openmmlab.com/mmclassification/v0/mvit/mvitv2-large_3rdparty_in1k_20220722-2b57b983.pth
Converted From:
Weights: https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth
Code: https://github.com/facebookresearch/mvit
Config: configs/mvit/mvitv2-large_8xb256_in1k.py