176 lines
5.8 KiB
YAML
176 lines
5.8 KiB
YAML
Collections:
|
|
- Name: RepVGG
|
|
Metadata:
|
|
Training Data: ImageNet-1k
|
|
Architecture:
|
|
- re-parameterization Convolution
|
|
- VGG-style Neural Network
|
|
Paper:
|
|
URL: https://arxiv.org/abs/2101.03697
|
|
Title: 'RepVGG: Making VGG-style ConvNets Great Again'
|
|
README: configs/repvgg/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.16.0/mmcls/models/backbones/repvgg.py#L257
|
|
Version: v0.16.0
|
|
|
|
Models:
|
|
- Name: repvgg-A0_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-A0_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 1360233728
|
|
Parameters: 8309384
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 72.37
|
|
Top 5 Accuracy: 90.56
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_8xb32_in1k_20221213-60ae8e23.pth
|
|
- Name: repvgg-A1_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-A1_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 2362750208
|
|
Parameters: 12789864
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 74.23
|
|
Top 5 Accuracy: 91.80
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_8xb32_in1k_20221213-f81bf3df.pth
|
|
- Name: repvgg-A2_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-A2_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 5115612544
|
|
Parameters: 25499944
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 76.49
|
|
Top 5 Accuracy: 93.09
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_8xb32_in1k_20221213-a8767caf.pth
|
|
- Name: repvgg-B0_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B0_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 15820000000
|
|
Parameters: 3420000
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 75.27
|
|
Top 5 Accuracy: 92.21
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_8xb32_in1k_20221213-5091ecc7.pth
|
|
- Name: repvgg-B1_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B1_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 11813537792
|
|
Parameters: 51829480
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 78.19
|
|
Top 5 Accuracy: 94.04
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_8xb32_in1k_20221213-d17c45e7.pth
|
|
- Name: repvgg-B1g2_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B1g2_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 8807794688
|
|
Parameters: 41360104
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 77.87
|
|
Top 5 Accuracy: 93.99
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_8xb32_in1k_20221213-ae6428fd.pth
|
|
- Name: repvgg-B1g4_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B1g4_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 7304923136
|
|
Parameters: 36125416
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 77.81
|
|
Top 5 Accuracy: 93.77
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_8xb32_in1k_20221213-a7a4aaea.pth
|
|
- Name: repvgg-B2_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B2_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 18374175232
|
|
Parameters: 80315112
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 78.58
|
|
Top 5 Accuracy: 94.23
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_8xb32_in1k_20221213-d8b420ef.pth
|
|
- Name: repvgg-B2g4_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B2g4_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 11329464832
|
|
Parameters: 55777512
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 79.44
|
|
Top 5 Accuracy: 94.72
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_8xb32_in1k_20221213-0c1990eb.pth
|
|
- Name: repvgg-B3_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B3_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 26206448128
|
|
Parameters: 110960872
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 80.58
|
|
Top 5 Accuracy: 95.33
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_8xb32_in1k_20221213-927a329a.pth
|
|
- Name: repvgg-B3g4_8xb32_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-B3g4_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 16062065152
|
|
Parameters: 75626728
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 80.26
|
|
Top 5 Accuracy: 95.15
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_8xb32_in1k_20221213-e01cb280.pth
|
|
- Name: repvgg-D2se_3rdparty_in1k
|
|
In Collection: RepVGG
|
|
Config: configs/repvgg/repvgg-D2se_8xb32_in1k.py
|
|
Metadata:
|
|
FLOPs: 32838581760
|
|
Parameters: 120387572
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Task: Image Classification
|
|
Metrics:
|
|
Top 1 Accuracy: 81.81
|
|
Top 5 Accuracy: 95.94
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-cf3139b7.pth
|
|
Converted From:
|
|
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
|
|
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L250
|