353 lines
11 KiB
YAML
353 lines
11 KiB
YAML
Collections:
|
|
- Name: ResNet
|
|
Metadata:
|
|
Training Data: ImageNet-1k
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
Training Resources: 8x V100 GPUs
|
|
Epochs: 100
|
|
Batch Size: 256
|
|
Architecture:
|
|
- ResNet
|
|
Paper:
|
|
URL: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
|
|
Title: "Deep Residual Learning for Image Recognition"
|
|
README: configs/resnet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/resnet.py#L383
|
|
Version: v0.15.0
|
|
|
|
Models:
|
|
- Name: resnet18_8xb16_cifar10
|
|
Metadata:
|
|
Training Data: CIFAR-10
|
|
Epochs: 200
|
|
Batch Size: 128
|
|
FLOPs: 560000000
|
|
Parameters: 11170000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: CIFAR-10
|
|
Metrics:
|
|
Top 1 Accuracy: 94.82
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth
|
|
Config: configs/resnet/resnet18_8xb16_cifar10.py
|
|
- Name: resnet34_8xb16_cifar10
|
|
Metadata:
|
|
Training Data: CIFAR-10
|
|
Epochs: 200
|
|
Batch Size: 128
|
|
FLOPs: 1160000000
|
|
Parameters: 21280000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: CIFAR-10
|
|
Metrics:
|
|
Top 1 Accuracy: 95.34
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20210528-a8aa36a6.pth
|
|
Config: configs/resnet/resnet34_8xb16_cifar10.py
|
|
- Name: resnet50_8xb16_cifar10
|
|
Metadata:
|
|
Training Data: CIFAR-10
|
|
Epochs: 200
|
|
Batch Size: 128
|
|
FLOPs: 1310000000
|
|
Parameters: 23520000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: CIFAR-10
|
|
Metrics:
|
|
Top 1 Accuracy: 95.55
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth
|
|
Config: configs/resnet/resnet50_8xb16_cifar10.py
|
|
- Name: resnet101_8xb16_cifar10
|
|
Metadata:
|
|
Training Data: CIFAR-10
|
|
Epochs: 200
|
|
Batch Size: 128
|
|
FLOPs: 2520000000
|
|
Parameters: 42510000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: CIFAR-10
|
|
Metrics:
|
|
Top 1 Accuracy: 95.58
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20210528-2d29e936.pth
|
|
Config: configs/resnet/resnet101_8xb16_cifar10.py
|
|
- Name: resnet152_8xb16_cifar10
|
|
Metadata:
|
|
Training Data: CIFAR-10
|
|
Epochs: 200
|
|
Batch Size: 128
|
|
FLOPs: 3740000000
|
|
Parameters: 58160000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: CIFAR-10
|
|
Metrics:
|
|
Top 1 Accuracy: 95.76
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20210528-3e8e9178.pth
|
|
Config: configs/resnet/resnet152_8xb16_cifar10.py
|
|
- Name: resnet50_8xb16_cifar100
|
|
Metadata:
|
|
Training Data: CIFAR-100
|
|
Epochs: 200
|
|
Batch Size: 128
|
|
FLOPs: 1310000000
|
|
Parameters: 23710000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: CIFAR-100
|
|
Metrics:
|
|
Top 1 Accuracy: 79.90
|
|
Top 5 Accuracy: 95.19
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar100_20210528-67b58a1b.pth
|
|
Config: configs/resnet/resnet50_8xb16_cifar100.py
|
|
- Name: resnet18_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 1820000000
|
|
Parameters: 11690000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 69.90
|
|
Top 5 Accuracy: 89.43
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.pth
|
|
Config: configs/resnet/resnet18_8xb32_in1k.py
|
|
- Name: resnet34_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 3680000000
|
|
Parameters: 2180000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 73.62
|
|
Top 5 Accuracy: 91.59
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_8xb32_in1k_20210831-f257d4e6.pth
|
|
Config: configs/resnet/resnet34_8xb32_in1k.py
|
|
- Name: resnet50_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 4120000000
|
|
Parameters: 25560000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 76.55
|
|
Top 5 Accuracy: 93.06
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth
|
|
Config: configs/resnet/resnet50_8xb32_in1k.py
|
|
- Name: resnet101_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 7850000000
|
|
Parameters: 44550000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 77.97
|
|
Top 5 Accuracy: 94.06
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_8xb32_in1k_20210831-539c63f8.pth
|
|
Config: configs/resnet/resnet101_8xb32_in1k.py
|
|
- Name: resnet152_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 11580000000
|
|
Parameters: 60190000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 78.48
|
|
Top 5 Accuracy: 94.13
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_8xb32_in1k_20210901-4d7582fa.pth
|
|
Config: configs/resnet/resnet152_8xb32_in1k.py
|
|
- Name: resnetv1d50_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 4360000000
|
|
Parameters: 25580000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 77.54
|
|
Top 5 Accuracy: 93.57
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth
|
|
Config: configs/resnet/resnetv1d50_8xb32_in1k.py
|
|
- Name: resnetv1d101_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 8090000000
|
|
Parameters: 44570000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 78.93
|
|
Top 5 Accuracy: 94.48
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.pth
|
|
Config: configs/resnet/resnetv1d101_8xb32_in1k.py
|
|
- Name: resnetv1d152_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 11820000000
|
|
Parameters: 60210000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 79.41
|
|
Top 5 Accuracy: 94.70
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.pth
|
|
Config: configs/resnet/resnetv1d152_8xb32_in1k.py
|
|
- Name: resnet50_8xb32-fp16_in1k
|
|
Metadata:
|
|
FLOPs: 4120000000
|
|
Parameters: 25560000
|
|
Training Techniques:
|
|
- SGD with Momentum
|
|
- Weight Decay
|
|
- Mixed Precision Training
|
|
In Collection: ResNet
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 76.30
|
|
Top 5 Accuracy: 93.07
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/fp16/resnet50_batch256_fp16_imagenet_20210320-b3964210.pth
|
|
Config: configs/resnet/resnet50_8xb32-fp16_in1k.py
|
|
- Name: resnet50_8xb256-rsb-a1-600e_in1k
|
|
Metadata:
|
|
FLOPs: 4120000000
|
|
Parameters: 25560000
|
|
Training Techniques:
|
|
- LAMB
|
|
- Weight Decay
|
|
- Cosine Annealing
|
|
- Mixup
|
|
- CutMix
|
|
- RepeatAugSampler
|
|
- RandAugment
|
|
Epochs: 600
|
|
Batch Size: 2048
|
|
In Collection: ResNet
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 80.12
|
|
Top 5 Accuracy: 94.78
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth
|
|
Config: configs/resnet/resnet50_8xb256-rsb-a1-600e_in1k.py
|
|
- Name: resnet50_8xb256-rsb-a2-300e_in1k
|
|
Metadata:
|
|
FLOPs: 4120000000
|
|
Parameters: 25560000
|
|
Training Techniques:
|
|
- LAMB
|
|
- Weight Decay
|
|
- Cosine Annealing
|
|
- Mixup
|
|
- CutMix
|
|
- RepeatAugSampler
|
|
- RandAugment
|
|
Epochs: 300
|
|
Batch Size: 2048
|
|
In Collection: ResNet
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 79.55
|
|
Top 5 Accuracy: 94.37
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a2-300e_in1k_20211228-0fd8be6e.pth
|
|
Config: configs/resnet/resnet50_8xb256-rsb-a2-300e_in1k.py
|
|
- Name: resnet50_8xb256-rsb-a3-100e_in1k
|
|
Metadata:
|
|
FLOPs: 4120000000
|
|
Parameters: 25560000
|
|
Training Techniques:
|
|
- LAMB
|
|
- Weight Decay
|
|
- Cosine Annealing
|
|
- Mixup
|
|
- CutMix
|
|
- RandAugment
|
|
Batch Size: 2048
|
|
In Collection: ResNet
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 78.30
|
|
Top 5 Accuracy: 93.80
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a3-100e_in1k_20211228-3493673c.pth
|
|
Config: configs/resnet/resnet50_8xb256-rsb-a3-100e_in1k.py
|
|
- Name: resnetv1c50_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 4360000000
|
|
Parameters: 25580000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 77.01
|
|
Top 5 Accuracy: 93.58
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c50_8xb32_in1k_20220214-3343eccd.pth
|
|
Config: configs/resnet/resnetv1c50_8xb32_in1k.py
|
|
- Name: resnetv1c101_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 8090000000
|
|
Parameters: 44570000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 78.30
|
|
Top 5 Accuracy: 94.27
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c101_8xb32_in1k_20220214-434fe45f.pth
|
|
Config: configs/resnet/resnetv1c101_8xb32_in1k.py
|
|
- Name: resnetv1c152_8xb32_in1k
|
|
Metadata:
|
|
FLOPs: 11820000000
|
|
Parameters: 60210000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: ImageNet-1k
|
|
Metrics:
|
|
Top 1 Accuracy: 78.76
|
|
Top 5 Accuracy: 94.41
|
|
Task: Image Classification
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1c152_8xb32_in1k_20220214-c013291f.pth
|
|
Config: configs/resnet/resnetv1c152_8xb32_in1k.py
|
|
- Name: resnet50_8xb8_cub
|
|
Metadata:
|
|
FLOPs: 16480000000
|
|
Parameters: 23920000
|
|
In Collection: ResNet
|
|
Results:
|
|
- Dataset: CUB-200-2011
|
|
Metrics:
|
|
Top 1 Accuracy: 88.45
|
|
Task: Image Classification
|
|
Pretrain: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth
|
|
Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb8_cub_20220307-57840e60.pth
|
|
Config: configs/resnet/resnet50_8xb8_cub.py
|