mmpretrain/configs/seresnet/metafile.yml

48 lines
1.5 KiB
YAML

Collections:
- Name: SEResNet
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Epochs: 140
Batch Size: 256
Architecture:
- ResNet
Paper:
URL: https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
Title: "Squeeze-and-Excitation Networks"
README: configs/seresnet/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/seresnet.py#L58
Version: v0.15.0
Models:
- Name: seresnet50_8xb32_in1k
Metadata:
FLOPs: 4130000000
Parameters: 28090000
In Collection: SEResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 77.74
Top 5 Accuracy: 93.84
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
Config: configs/seresnet/seresnet50_8xb32_in1k.py
- Name: seresnet101_8xb32_in1k
Metadata:
FLOPs: 7860000000
Parameters: 49330000
In Collection: SEResNet
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.26
Top 5 Accuracy: 94.07
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
Config: configs/seresnet/seresnet101_8xb32_in1k.py