mmpretrain/configs/vision_transformer/metafile.yml

96 lines
4.0 KiB
YAML

Collections:
- Name: Vision Transformer
Metadata:
Architecture:
- Attention Dropout
- Convolution
- Dense Connections
- Dropout
- GELU
- Layer Normalization
- Multi-Head Attention
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale'
URL: https://arxiv.org/abs/2010.11929
README: configs/vision_transformer/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.17.0/mmcls/models/backbones/vision_transformer.py
Version: v0.17.0
Models:
- Name: vit-base-p32_in21k-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 13056716544
Parameters: 88297192
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: Vision Transformer
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 84.01
Top 5 Accuracy: 97.08
Weights: https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p32_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-9cea8599.pth
Config: configs/vision_transformer/vit-base-p32_64xb64_in1k-384px.py
Converted From:
Weights: https://console.cloud.google.com/storage/browser/_details/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz
Code: https://github.com/google-research/vision_transformer/blob/88a52f8892c80c10de99194990a517b4d80485fd/vit_jax/models.py#L208
- Name: vit-base-p16_32xb128-mae_in1k
Metadata:
FLOPs: 17581972224
Parameters: 86567656
Training Data:
- ImageNet-1k
In Collection: Vision Transformer
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 82.37
Top 5 Accuracy: 96.15
Weights: https://download.openmmlab.com/mmclassification/v0/vit/vit-base-p16_pt-32xb128-mae_in1k_20220623-4c544545.pth
Config: configs/vision_transformer/vit-base-p16_32xb128-mae_in1k.py
- Name: vit-base-p16_in21k-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 55538974464
Parameters: 86859496
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: Vision Transformer
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 85.43
Top 5 Accuracy: 97.77
Weights: https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth
Config: configs/vision_transformer/vit-base-p16_64xb64_in1k-384px.py
Converted From:
Weights: https://console.cloud.google.com/storage/browser/_details/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz
Code: https://github.com/google-research/vision_transformer/blob/88a52f8892c80c10de99194990a517b4d80485fd/vit_jax/models.py#L208
- Name: vit-large-p16_in21k-pre_3rdparty_in1k-384px
Metadata:
FLOPs: 191210034176
Parameters: 304715752
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: Vision Transformer
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 85.63
Top 5 Accuracy: 97.63
Weights: https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-large-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-b20ba619.pth
Config: configs/vision_transformer/vit-large-p16_64xb64_in1k-384px.py
Converted From:
Weights: https://console.cloud.google.com/storage/browser/_details/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_strong1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz
Code: https://github.com/google-research/vision_transformer/blob/88a52f8892c80c10de99194990a517b4d80485fd/vit_jax/models.py#L208