48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
# dataset settings
|
|
dataset_type = 'CIFAR100'
|
|
data_preprocessor = dict(
|
|
num_classes=100,
|
|
# RGB format normalization parameters
|
|
mean=[129.304, 124.070, 112.434],
|
|
std=[68.170, 65.392, 70.418],
|
|
# loaded images are already RGB format
|
|
to_rgb=False)
|
|
|
|
train_pipeline = [
|
|
dict(type='RandomCrop', crop_size=32, padding=4),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(type='PackClsInputs'),
|
|
]
|
|
|
|
test_pipeline = [
|
|
dict(type='PackClsInputs'),
|
|
]
|
|
|
|
train_dataloader = dict(
|
|
batch_size=16,
|
|
num_workers=2,
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_prefix='data/cifar100',
|
|
test_mode=False,
|
|
pipeline=train_pipeline),
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
persistent_workers=True,
|
|
)
|
|
|
|
val_dataloader = dict(
|
|
batch_size=16,
|
|
num_workers=2,
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_prefix='data/cifar100/',
|
|
test_mode=True,
|
|
pipeline=test_pipeline),
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
persistent_workers=True,
|
|
)
|
|
val_evaluator = dict(type='Accuracy', topk=(1, ))
|
|
|
|
test_dataloader = val_dataloader
|
|
test_evaluator = val_evaluator
|