mmpretrain/configs/_base_/models/conformer/small-p32.py

28 lines
737 B
Python

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='Conformer',
arch='small',
patch_size=32,
drop_path_rate=0.1,
init_cfg=None),
neck=None,
head=dict(
type='ConformerHead',
num_classes=1000,
in_channels=[1024, 384],
init_cfg=None,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)