78 lines
2.6 KiB
Python
78 lines
2.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from collections import OrderedDict
|
|
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from mmcv.cnn import build_activation_layer, constant_init, kaiming_init
|
|
|
|
from ..builder import HEADS
|
|
from .cls_head import ClsHead
|
|
|
|
|
|
@HEADS.register_module()
|
|
class VisionTransformerClsHead(ClsHead):
|
|
"""Vision Transformer classifier head.
|
|
|
|
Args:
|
|
num_classes (int): Number of categories excluding the background
|
|
category.
|
|
in_channels (int): Number of channels in the input feature map.
|
|
hidden_dim (int): Number of the dimensions for hidden layer. Only
|
|
available during pre-training. Default None.
|
|
act_cfg (dict): The activation config. Only available during
|
|
pre-training. Defaults to Tanh.
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_classes,
|
|
in_channels,
|
|
hidden_dim=None,
|
|
act_cfg=dict(type='Tanh'),
|
|
*args,
|
|
**kwargs):
|
|
super(VisionTransformerClsHead, self).__init__(*args, **kwargs)
|
|
self.in_channels = in_channels
|
|
self.num_classes = num_classes
|
|
self.hidden_dim = hidden_dim
|
|
self.act_cfg = act_cfg
|
|
|
|
if self.num_classes <= 0:
|
|
raise ValueError(
|
|
f'num_classes={num_classes} must be a positive integer')
|
|
|
|
self._init_layers()
|
|
|
|
def _init_layers(self):
|
|
if self.hidden_dim is None:
|
|
layers = [('head', nn.Linear(self.in_channels, self.num_classes))]
|
|
else:
|
|
layers = [
|
|
('pre_logits', nn.Linear(self.in_channels, self.hidden_dim)),
|
|
('act', build_activation_layer(self.act_cfg)),
|
|
('head', nn.Linear(self.hidden_dim, self.num_classes)),
|
|
]
|
|
self.layers = nn.Sequential(OrderedDict(layers))
|
|
|
|
def init_weights(self):
|
|
super(VisionTransformerClsHead, self).init_weights()
|
|
# Modified from ClassyVision
|
|
if hasattr(self.layers, 'pre_logits'):
|
|
# Lecun norm
|
|
kaiming_init(
|
|
self.layers.pre_logits, mode='fan_in', nonlinearity='linear')
|
|
constant_init(self.layers.head, 0)
|
|
|
|
def simple_test(self, img):
|
|
"""Test without augmentation."""
|
|
cls_score = self.layers(img)
|
|
if isinstance(cls_score, list):
|
|
cls_score = sum(cls_score) / float(len(cls_score))
|
|
pred = F.softmax(cls_score, dim=1) if cls_score is not None else None
|
|
|
|
return self.post_process(pred)
|
|
|
|
def forward_train(self, x, gt_label):
|
|
cls_score = self.layers(x)
|
|
losses = self.loss(cls_score, gt_label)
|
|
return losses
|