mmpretrain/tests/test_data/test_datasets/test_common.py

251 lines
8.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from unittest.mock import MagicMock, patch
import numpy as np
import pytest
import torch
from mmcls.datasets import DATASETS, BaseDataset, MultiLabelDataset
@pytest.mark.parametrize(
'dataset_name',
['MNIST', 'FashionMNIST', 'CIFAR10', 'CIFAR100', 'ImageNet', 'VOC'])
def test_datasets_override_default(dataset_name):
dataset_class = DATASETS.get(dataset_name)
dataset_class.load_annotations = MagicMock()
original_classes = dataset_class.CLASSES
# Test VOC year
if dataset_name == 'VOC':
dataset = dataset_class(
data_prefix='VOC2007',
pipeline=[],
classes=('bus', 'car'),
test_mode=True)
assert dataset.year == 2007
with pytest.raises(ValueError):
dataset = dataset_class(
data_prefix='VOC',
pipeline=[],
classes=('bus', 'car'),
test_mode=True)
# Test setting classes as a tuple
dataset = dataset_class(
data_prefix='VOC2007' if dataset_name == 'VOC' else '',
pipeline=[],
classes=('bus', 'car'),
test_mode=True)
assert dataset.CLASSES == ('bus', 'car')
# Test setting classes as a list
dataset = dataset_class(
data_prefix='VOC2007' if dataset_name == 'VOC' else '',
pipeline=[],
classes=['bus', 'car'],
test_mode=True)
assert dataset.CLASSES == ['bus', 'car']
# Test setting classes through a file
tmp_file = tempfile.NamedTemporaryFile()
with open(tmp_file.name, 'w') as f:
f.write('bus\ncar\n')
dataset = dataset_class(
data_prefix='VOC2007' if dataset_name == 'VOC' else '',
pipeline=[],
classes=tmp_file.name,
test_mode=True)
tmp_file.close()
assert dataset.CLASSES == ['bus', 'car']
# Test overriding not a subset
dataset = dataset_class(
data_prefix='VOC2007' if dataset_name == 'VOC' else '',
pipeline=[],
classes=['foo'],
test_mode=True)
assert dataset.CLASSES == ['foo']
# Test default behavior
dataset = dataset_class(
data_prefix='VOC2007' if dataset_name == 'VOC' else '', pipeline=[])
if dataset_name == 'VOC':
assert dataset.data_prefix == 'VOC2007'
else:
assert dataset.data_prefix == ''
assert not dataset.test_mode
assert dataset.ann_file is None
assert dataset.CLASSES == original_classes
@patch.multiple(MultiLabelDataset, __abstractmethods__=set())
@patch.multiple(BaseDataset, __abstractmethods__=set())
def test_dataset_evaluation():
# test multi-class single-label evaluation
dataset = BaseDataset(data_prefix='', pipeline=[], test_mode=True)
dataset.data_infos = [
dict(gt_label=0),
dict(gt_label=0),
dict(gt_label=1),
dict(gt_label=2),
dict(gt_label=1),
dict(gt_label=0)
]
fake_results = np.array([[0.7, 0, 0.3], [0.5, 0.2, 0.3], [0.4, 0.5, 0.1],
[0, 0, 1], [0, 0, 1], [0, 0, 1]])
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'support', 'accuracy'],
metric_options={'topk': 1})
assert eval_results['precision'] == pytest.approx(
(1 + 1 + 1 / 3) / 3 * 100.0)
assert eval_results['recall'] == pytest.approx(
(2 / 3 + 1 / 2 + 1) / 3 * 100.0)
assert eval_results['f1_score'] == pytest.approx(
(4 / 5 + 2 / 3 + 1 / 2) / 3 * 100.0)
assert eval_results['support'] == 6
assert eval_results['accuracy'] == pytest.approx(4 / 6 * 100)
# test input as tensor
fake_results_tensor = torch.from_numpy(fake_results)
eval_results_ = dataset.evaluate(
fake_results_tensor,
metric=['precision', 'recall', 'f1_score', 'support', 'accuracy'],
metric_options={'topk': 1})
assert eval_results_ == eval_results
# test thr
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'accuracy'],
metric_options={
'thrs': 0.6,
'topk': 1
})
assert eval_results['precision'] == pytest.approx(
(1 + 0 + 1 / 3) / 3 * 100.0)
assert eval_results['recall'] == pytest.approx((1 / 3 + 0 + 1) / 3 * 100.0)
assert eval_results['f1_score'] == pytest.approx(
(1 / 2 + 0 + 1 / 2) / 3 * 100.0)
assert eval_results['accuracy'] == pytest.approx(2 / 6 * 100)
# thrs must be a number or tuple
with pytest.raises(TypeError):
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'accuracy'],
metric_options={
'thrs': 'thr',
'topk': 1
})
# test topk and thr as tuple
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'accuracy'],
metric_options={
'thrs': (0.5, 0.6),
'topk': (1, 2)
})
assert {
'precision_thr_0.50', 'precision_thr_0.60', 'recall_thr_0.50',
'recall_thr_0.60', 'f1_score_thr_0.50', 'f1_score_thr_0.60',
'accuracy_top-1_thr_0.50', 'accuracy_top-1_thr_0.60',
'accuracy_top-2_thr_0.50', 'accuracy_top-2_thr_0.60'
} == eval_results.keys()
assert type(eval_results['precision_thr_0.50']) == float
assert type(eval_results['recall_thr_0.50']) == float
assert type(eval_results['f1_score_thr_0.50']) == float
assert type(eval_results['accuracy_top-1_thr_0.50']) == float
eval_results = dataset.evaluate(
fake_results,
metric='accuracy',
metric_options={
'thrs': 0.5,
'topk': (1, 2)
})
assert {'accuracy_top-1', 'accuracy_top-2'} == eval_results.keys()
assert type(eval_results['accuracy_top-1']) == float
eval_results = dataset.evaluate(
fake_results,
metric='accuracy',
metric_options={
'thrs': (0.5, 0.6),
'topk': 1
})
assert {'accuracy_thr_0.50', 'accuracy_thr_0.60'} == eval_results.keys()
assert type(eval_results['accuracy_thr_0.50']) == float
# test evaluation results for classes
eval_results = dataset.evaluate(
fake_results,
metric=['precision', 'recall', 'f1_score', 'support'],
metric_options={'average_mode': 'none'})
assert eval_results['precision'].shape == (3, )
assert eval_results['recall'].shape == (3, )
assert eval_results['f1_score'].shape == (3, )
assert eval_results['support'].shape == (3, )
# the average_mode method must be valid
with pytest.raises(ValueError):
eval_results = dataset.evaluate(
fake_results,
metric='precision',
metric_options={'average_mode': 'micro'})
with pytest.raises(ValueError):
eval_results = dataset.evaluate(
fake_results,
metric='recall',
metric_options={'average_mode': 'micro'})
with pytest.raises(ValueError):
eval_results = dataset.evaluate(
fake_results,
metric='f1_score',
metric_options={'average_mode': 'micro'})
with pytest.raises(ValueError):
eval_results = dataset.evaluate(
fake_results,
metric='support',
metric_options={'average_mode': 'micro'})
# the metric must be valid for the dataset
with pytest.raises(ValueError):
eval_results = dataset.evaluate(fake_results, metric='map')
# test multi-label evaluation
dataset = MultiLabelDataset(data_prefix='', pipeline=[], test_mode=True)
dataset.data_infos = [
dict(gt_label=[1, 1, 0, -1]),
dict(gt_label=[1, 1, 0, -1]),
dict(gt_label=[0, -1, 1, -1]),
dict(gt_label=[0, 1, 0, -1]),
dict(gt_label=[0, 1, 0, -1]),
]
fake_results = np.array([[0.9, 0.8, 0.3, 0.2], [0.1, 0.2, 0.2, 0.1],
[0.7, 0.5, 0.9, 0.3], [0.8, 0.1, 0.1, 0.2],
[0.8, 0.1, 0.1, 0.2]])
# the metric must be valid
with pytest.raises(ValueError):
metric = 'coverage'
dataset.evaluate(fake_results, metric=metric)
# only one metric
metric = 'mAP'
eval_results = dataset.evaluate(fake_results, metric=metric)
assert 'mAP' in eval_results.keys()
assert 'CP' not in eval_results.keys()
# multiple metrics
metric = ['mAP', 'CR', 'OF1']
eval_results = dataset.evaluate(fake_results, metric=metric)
assert 'mAP' in eval_results.keys()
assert 'CR' in eval_results.keys()
assert 'OF1' in eval_results.keys()
assert 'CF1' not in eval_results.keys()