mmpretrain/tests/test_data/test_pipelines/test_transform.py

1189 lines
44 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import random
import mmcv
import numpy as np
import pytest
import torch
import torchvision
from mmcv.utils import build_from_cfg
from numpy.testing import assert_array_almost_equal, assert_array_equal
from PIL import Image
from torchvision import transforms
import mmcls.datasets.pipelines.transforms as mmcls_transforms
from mmcls.datasets.builder import PIPELINES
from mmcls.datasets.pipelines import Compose
def construct_toy_data():
img = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
results = dict()
# image
results['ori_img'] = img
results['img'] = copy.deepcopy(img)
results['ori_shape'] = img.shape
results['img_shape'] = img.shape
return results
def test_resize():
# test assertion if size is smaller than 0
with pytest.raises(AssertionError):
transform = dict(type='Resize', size=-1)
build_from_cfg(transform, PIPELINES)
# test assertion if size is tuple but the second value is smaller than 0
# and the second value is not equal to -1
with pytest.raises(AssertionError):
transform = dict(type='Resize', size=(224, -2))
build_from_cfg(transform, PIPELINES)
# test assertion if size is tuple but the first value is smaller than 0
with pytest.raises(AssertionError):
transform = dict(type='Resize', size=(-1, 224))
build_from_cfg(transform, PIPELINES)
# test assertion if size is tuple and len(size) < 2
with pytest.raises(AssertionError):
transform = dict(type='Resize', size=(224, ))
build_from_cfg(transform, PIPELINES)
# test assertion if size is tuple len(size) > 2
with pytest.raises(AssertionError):
transform = dict(type='Resize', size=(224, 224, 3))
build_from_cfg(transform, PIPELINES)
# test assertion when interpolation is invalid
with pytest.raises(AssertionError):
transform = dict(type='Resize', size=224, interpolation='2333')
build_from_cfg(transform, PIPELINES)
# test repr
transform = dict(type='Resize', size=224)
resize_module = build_from_cfg(transform, PIPELINES)
assert isinstance(repr(resize_module), str)
# read test image
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img2'] = copy.deepcopy(img)
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img', 'img2']
def reset_results(results, original_img):
results['img'] = copy.deepcopy(original_img)
results['img2'] = copy.deepcopy(original_img)
results['img_shape'] = original_img.shape
results['ori_shape'] = original_img.shape
results['img_fields'] = ['img', 'img2']
return results
# test resize when size is int
transform = dict(type='Resize', size=224, interpolation='bilinear')
resize_module = build_from_cfg(transform, PIPELINES)
results = resize_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 224, 3)
# test resize when size is tuple and the second value is -1
transform = dict(type='Resize', size=(224, -1), interpolation='bilinear')
resize_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = resize_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 298, 3)
# test resize when size is tuple
transform = dict(type='Resize', size=(224, 224), interpolation='bilinear')
resize_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = resize_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 224, 3)
# test resize when resize_height != resize_width
transform = dict(type='Resize', size=(224, 256), interpolation='bilinear')
resize_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = resize_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 256, 3)
# test resize when size is larger than img.shape
img_height, img_width, _ = original_img.shape
transform = dict(
type='Resize',
size=(img_height * 2, img_width * 2),
interpolation='bilinear')
resize_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = resize_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (img_height * 2, img_width * 2, 3)
# test resize with different backends
transform_cv2 = dict(
type='Resize',
size=(224, 256),
interpolation='bilinear',
backend='cv2')
transform_pil = dict(
type='Resize',
size=(224, 256),
interpolation='bilinear',
backend='pillow')
resize_module_cv2 = build_from_cfg(transform_cv2, PIPELINES)
resize_module_pil = build_from_cfg(transform_pil, PIPELINES)
results = reset_results(results, original_img)
results['img_fields'] = ['img']
results_cv2 = resize_module_cv2(results)
results['img_fields'] = ['img2']
results_pil = resize_module_pil(results)
assert np.allclose(results_cv2['img'], results_pil['img2'], atol=45)
# compare results with torchvision
transform = dict(type='Resize', size=(224, 224), interpolation='area')
resize_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = resize_module(results)
resize_module = transforms.Resize(
size=(224, 224), interpolation=Image.BILINEAR)
pil_img = Image.fromarray(original_img)
resized_img = resize_module(pil_img)
resized_img = np.array(resized_img)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 224, 3)
assert np.allclose(results['img'], resized_img, atol=30)
def test_center_crop():
# test assertion if size is smaller than 0
with pytest.raises(AssertionError):
transform = dict(type='CenterCrop', crop_size=-1)
build_from_cfg(transform, PIPELINES)
# test assertion if size is tuple but one value is smaller than 0
with pytest.raises(AssertionError):
transform = dict(type='CenterCrop', crop_size=(224, -1))
build_from_cfg(transform, PIPELINES)
# test assertion if size is tuple and len(size) < 2
with pytest.raises(AssertionError):
transform = dict(type='CenterCrop', crop_size=(224, ))
build_from_cfg(transform, PIPELINES)
# test assertion if size is tuple len(size) > 2
with pytest.raises(AssertionError):
transform = dict(type='CenterCrop', crop_size=(224, 224, 3))
build_from_cfg(transform, PIPELINES)
# test assertion if efficientnet is True and crop_size is tuple
with pytest.raises(AssertionError):
transform = dict(
type='CenterCrop',
crop_size=(224, 224),
efficientnet_style=True,
)
build_from_cfg(transform, PIPELINES)
# test assertion if efficientnet is True and interpolation is invalid
with pytest.raises(AssertionError):
transform = dict(
type='CenterCrop',
crop_size=224,
efficientnet_style=True,
interpolation='2333')
build_from_cfg(transform, PIPELINES)
# test assertion if efficientnet is True and crop_padding is negative
with pytest.raises(AssertionError):
transform = dict(
type='CenterCrop',
crop_size=224,
efficientnet_style=True,
crop_padding=-1)
build_from_cfg(transform, PIPELINES)
# test repr
transform = dict(type='CenterCrop', crop_size=224)
center_crop_module = build_from_cfg(transform, PIPELINES)
assert isinstance(repr(center_crop_module), str)
# read test image
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img2'] = copy.deepcopy(img)
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img', 'img2']
def reset_results(results, original_img):
results['img'] = copy.deepcopy(original_img)
results['img2'] = copy.deepcopy(original_img)
results['img_shape'] = original_img.shape
results['ori_shape'] = original_img.shape
return results
# test CenterCrop when size is int
transform = dict(type='CenterCrop', crop_size=224)
center_crop_module = build_from_cfg(transform, PIPELINES)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 224, 3)
# test CenterCrop when size is int and efficientnet_style is True
# and crop_padding=0
transform = dict(
type='CenterCrop',
crop_size=224,
efficientnet_style=True,
crop_padding=0)
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 224, 3)
results_img = copy.deepcopy(results['img'])
short_edge = min(*results['ori_shape'][:2])
transform = dict(type='CenterCrop', crop_size=short_edge)
baseline_center_crop_module = build_from_cfg(transform, PIPELINES)
transform = dict(type='Resize', size=224)
baseline_resize_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = baseline_center_crop_module(results)
results = baseline_resize_module(results)
assert np.equal(results['img'], results_img).all()
# test CenterCrop when size is tuple
transform = dict(type='CenterCrop', crop_size=(224, 224))
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (224, 224, 3)
# test CenterCrop when crop_height != crop_width
transform = dict(type='CenterCrop', crop_size=(256, 224))
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (256, 224, 3)
# test CenterCrop when crop_size is equal to img.shape
img_height, img_width, _ = original_img.shape
transform = dict(type='CenterCrop', crop_size=(img_height, img_width))
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (img_height, img_width, 3)
# test CenterCrop when crop_size is larger than img.shape
transform = dict(
type='CenterCrop', crop_size=(img_height * 2, img_width * 2))
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (img_height, img_width, 3)
# test CenterCrop when crop_width is smaller than img_width
transform = dict(type='CenterCrop', crop_size=(img_height, img_width / 2))
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (img_height, img_width / 2, 3)
# test CenterCrop when crop_height is smaller than img_height
transform = dict(type='CenterCrop', crop_size=(img_height / 2, img_width))
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
assert np.equal(results['img'], results['img2']).all()
assert results['img_shape'] == (img_height / 2, img_width, 3)
# compare results with torchvision
transform = dict(type='CenterCrop', crop_size=224)
center_crop_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = center_crop_module(results)
center_crop_module = transforms.CenterCrop(size=224)
pil_img = Image.fromarray(original_img)
cropped_img = center_crop_module(pil_img)
cropped_img = np.array(cropped_img)
assert np.equal(results['img'], results['img2']).all()
assert np.equal(results['img'], cropped_img).all()
def test_normalize():
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
# test repr
transform = dict(type='Normalize', **img_norm_cfg)
normalize_module = build_from_cfg(transform, PIPELINES)
assert isinstance(repr(normalize_module), str)
# read data
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img2'] = copy.deepcopy(img)
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img', 'img2']
norm_results = normalize_module(results)
assert np.equal(norm_results['img'], norm_results['img2']).all()
# compare results with manual computation
mean = np.array(img_norm_cfg['mean'])
std = np.array(img_norm_cfg['std'])
normalized_img = (original_img[..., ::-1] - mean) / std
assert np.allclose(norm_results['img'], normalized_img)
# compare results with torchvision
normalize_module = transforms.Normalize(mean=mean, std=std)
tensor_img = original_img[..., ::-1].copy()
tensor_img = torch.Tensor(tensor_img.transpose(2, 0, 1))
normalized_img = normalize_module(tensor_img)
normalized_img = np.array(normalized_img).transpose(1, 2, 0)
assert np.equal(norm_results['img'], normalized_img).all()
def test_randomcrop():
ori_img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
ori_img_pil = Image.open(
osp.join(osp.dirname(__file__), '../../data/color.jpg'))
seed = random.randint(0, 100)
# test crop size is int
kwargs = dict(size=200, padding=0, pad_if_needed=True, fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(size=200, padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
# test __repr__()
print(composed_transform)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 200, 3)
assert np.array(baseline).shape == (200, 200, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size < image size
kwargs = dict(size=(200, 300), padding=0, pad_if_needed=True, fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(size=(200, 300), padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 300, 3)
assert np.array(baseline).shape == (200, 300, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size > image size
kwargs = dict(size=(600, 700), padding=0, pad_if_needed=True, fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(size=(600, 700), padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (600, 700, 3)
assert np.array(baseline).shape == (600, 700, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size == image size
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
padding=0,
pad_if_needed=True,
fill=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
padding=0,
pad_if_needed=True,
pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (img.shape[0], img.shape[1], 3)
assert np.array(baseline).shape == (img.shape[0], img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
assert_array_equal(ori_img, img)
assert_array_equal(np.array(baseline), np.array(ori_img_pil))
# test different padding mode
for mode in ['constant', 'edge', 'reflect', 'symmetric']:
kwargs = dict(size=(500, 600), padding=0, pad_if_needed=True, fill=0)
kwargs['padding_mode'] = mode
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
kwargs = dict(
size=(500, 600), padding=0, pad_if_needed=True, pad_val=0)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (500, 600, 3)
assert np.array(baseline).shape == (500, 600, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len(
(img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
def test_randomresizedcrop():
ori_img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
ori_img_pil = Image.open(
osp.join(osp.dirname(__file__), '../../data/color.jpg'))
seed = random.randint(0, 100)
# test when scale is not of kind (min, max)
with pytest.raises(ValueError):
kwargs = dict(
size=(200, 300), scale=(1.0, 0.08), ratio=(3. / 4., 4. / 3.))
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
composed_transform(results)['img']
# test when ratio is not of kind (min, max)
with pytest.raises(ValueError):
kwargs = dict(
size=(200, 300), scale=(0.08, 1.0), ratio=(4. / 3., 3. / 4.))
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
composed_transform(results)['img']
# test when efficientnet_style is True and crop_padding < 0
with pytest.raises(AssertionError):
kwargs = dict(size=200, efficientnet_style=True, crop_padding=-1)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
composed_transform(results)['img']
# test crop size is int
kwargs = dict(size=200, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
# test __repr__()
print(composed_transform)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 200, 3)
assert np.array(baseline).shape == (200, 200, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size < image size
kwargs = dict(size=(200, 300), scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (200, 300, 3)
assert np.array(baseline).shape == (200, 300, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size < image size when efficientnet_style = True
kwargs = dict(
size=200,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
efficientnet_style=True)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert img.shape == (200, 200, 3)
# test crop size > image size
kwargs = dict(size=(600, 700), scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (600, 700, 3)
assert np.array(baseline).shape == (600, 700, 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test crop size < image size when efficientnet_style = True
kwargs = dict(
size=600,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
efficientnet_style=True)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert img.shape == (600, 600, 3)
# test cropping the whole image
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
scale=(1.0, 2.0),
ratio=(1.0, 2.0))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3)
assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# assert_array_equal(ori_img, img)
# assert_array_equal(np.array(ori_img_pil), np.array(baseline))
# test central crop when in_ratio < min(ratio)
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
scale=(1.0, 2.0),
ratio=(2., 3.))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3)
assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test central crop when in_ratio > max(ratio)
kwargs = dict(
size=(ori_img.shape[0], ori_img.shape[1]),
scale=(1.0, 2.0),
ratio=(3. / 4., 1))
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([torchvision.transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
baseline = composed_transform(ori_img_pil)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert np.array(img).shape == (ori_img.shape[0], ori_img.shape[1], 3)
assert np.array(baseline).shape == (ori_img.shape[0], ori_img.shape[1], 3)
nonzero = len((ori_img - np.array(ori_img_pil)[:, :, ::-1]).nonzero())
nonzero_transform = len((img - np.array(baseline)[:, :, ::-1]).nonzero())
assert nonzero == nonzero_transform
# test central crop when max_attempts = 0 and efficientnet_style = True
kwargs = dict(
size=200,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
efficientnet_style=True,
max_attempts=0,
crop_padding=32)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
kwargs = dict(crop_size=200, efficientnet_style=True, crop_padding=32)
resize_kwargs = dict(size=200)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.CenterCrop(**kwargs)])
aug.extend([mmcls_transforms.Resize(**resize_kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
baseline = composed_transform(results)['img']
assert img.shape == baseline.shape
assert np.equal(img, baseline).all()
# test central crop when max_attempts = 0 and efficientnet_style = True
kwargs = dict(
size=200,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
efficientnet_style=True,
max_attempts=100,
min_covered=1)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
kwargs = dict(crop_size=200, efficientnet_style=True, crop_padding=32)
resize_kwargs = dict(size=200)
random.seed(seed)
np.random.seed(seed)
aug = []
aug.extend([mmcls_transforms.CenterCrop(**kwargs)])
aug.extend([mmcls_transforms.Resize(**resize_kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
baseline = composed_transform(results)['img']
assert img.shape == baseline.shape
assert np.equal(img, baseline).all()
# test different interpolation types
for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
kwargs = dict(
size=(600, 700),
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation=mode)
aug = []
aug.extend([mmcls_transforms.RandomResizedCrop(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = ori_img
img = composed_transform(results)['img']
assert img.shape == (600, 700, 3)
def test_randomgrayscale():
# test rgb2gray, return the grayscale image with p>1
in_img = np.random.rand(10, 10, 3).astype(np.float32)
kwargs = dict(gray_prob=2)
aug = []
aug.extend([mmcls_transforms.RandomGrayscale(**kwargs)])
composed_transform = Compose(aug)
print(composed_transform)
results = dict()
results['img'] = in_img
img = composed_transform(results)['img']
computed_gray = (
in_img[:, :, 0] * 0.299 + in_img[:, :, 1] * 0.587 +
in_img[:, :, 2] * 0.114)
for i in range(img.shape[2]):
assert_array_almost_equal(img[:, :, i], computed_gray, decimal=4)
assert img.shape == (10, 10, 3)
# test rgb2gray, return the original image with p=-1
in_img = np.random.rand(10, 10, 3).astype(np.float32)
kwargs = dict(gray_prob=-1)
aug = []
aug.extend([mmcls_transforms.RandomGrayscale(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = in_img
img = composed_transform(results)['img']
assert_array_equal(img, in_img)
assert img.shape == (10, 10, 3)
# test image with one channel with our method
# and the function from torchvision
in_img = np.random.rand(10, 10, 1).astype(np.float32)
kwargs = dict(gray_prob=2)
aug = []
aug.extend([mmcls_transforms.RandomGrayscale(**kwargs)])
composed_transform = Compose(aug)
results = dict()
results['img'] = in_img
img = composed_transform(results)['img']
assert_array_equal(img, in_img)
assert img.shape == (10, 10, 1)
in_img_pil = Image.fromarray(in_img[:, :, 0], mode='L')
kwargs = dict(p=2)
aug = []
aug.extend([torchvision.transforms.RandomGrayscale(**kwargs)])
composed_transform = Compose(aug)
img_pil = composed_transform(in_img_pil)
assert_array_equal(np.array(img_pil), np.array(in_img_pil))
assert np.array(img_pil).shape == (10, 10)
def test_randomflip():
# test assertion if flip probability is smaller than 0
with pytest.raises(AssertionError):
transform = dict(type='RandomFlip', flip_prob=-1)
build_from_cfg(transform, PIPELINES)
# test assertion if flip probability is larger than 1
with pytest.raises(AssertionError):
transform = dict(type='RandomFlip', flip_prob=2)
build_from_cfg(transform, PIPELINES)
# test assertion if direction is not horizontal and vertical
with pytest.raises(AssertionError):
transform = dict(type='RandomFlip', direction='random')
build_from_cfg(transform, PIPELINES)
# test assertion if direction is not lowercase
with pytest.raises(AssertionError):
transform = dict(type='RandomFlip', direction='Horizontal')
build_from_cfg(transform, PIPELINES)
# read test image
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img2'] = copy.deepcopy(img)
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img', 'img2']
def reset_results(results, original_img):
results['img'] = copy.deepcopy(original_img)
results['img2'] = copy.deepcopy(original_img)
results['img_shape'] = original_img.shape
results['ori_shape'] = original_img.shape
return results
# test RandomFlip when flip_prob is 0
transform = dict(type='RandomFlip', flip_prob=0)
flip_module = build_from_cfg(transform, PIPELINES)
results = flip_module(results)
assert np.equal(results['img'], original_img).all()
assert np.equal(results['img'], results['img2']).all()
# test RandomFlip when flip_prob is 1
transform = dict(type='RandomFlip', flip_prob=1)
flip_module = build_from_cfg(transform, PIPELINES)
results = flip_module(results)
assert np.equal(results['img'], results['img2']).all()
# compare horizontal flip with torchvision
transform = dict(type='RandomFlip', flip_prob=1, direction='horizontal')
flip_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = flip_module(results)
flip_module = transforms.RandomHorizontalFlip(p=1)
pil_img = Image.fromarray(original_img)
flipped_img = flip_module(pil_img)
flipped_img = np.array(flipped_img)
assert np.equal(results['img'], results['img2']).all()
assert np.equal(results['img'], flipped_img).all()
# compare vertical flip with torchvision
transform = dict(type='RandomFlip', flip_prob=1, direction='vertical')
flip_module = build_from_cfg(transform, PIPELINES)
results = reset_results(results, original_img)
results = flip_module(results)
flip_module = transforms.RandomVerticalFlip(p=1)
pil_img = Image.fromarray(original_img)
flipped_img = flip_module(pil_img)
flipped_img = np.array(flipped_img)
assert np.equal(results['img'], results['img2']).all()
assert np.equal(results['img'], flipped_img).all()
def test_random_erasing():
# test erase_prob assertion
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', erase_prob=-1.)
build_from_cfg(cfg, PIPELINES)
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', erase_prob=1)
build_from_cfg(cfg, PIPELINES)
# test area_ratio assertion
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', min_area_ratio=-1.)
build_from_cfg(cfg, PIPELINES)
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', max_area_ratio=1)
build_from_cfg(cfg, PIPELINES)
with pytest.raises(AssertionError):
# min_area_ratio should be smaller than max_area_ratio
cfg = dict(
type='RandomErasing', min_area_ratio=0.6, max_area_ratio=0.4)
build_from_cfg(cfg, PIPELINES)
# test aspect_range assertion
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', aspect_range='str')
build_from_cfg(cfg, PIPELINES)
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', aspect_range=-1)
build_from_cfg(cfg, PIPELINES)
with pytest.raises(AssertionError):
# In aspect_range (min, max), min should be smaller than max.
cfg = dict(type='RandomErasing', aspect_range=[1.6, 0.6])
build_from_cfg(cfg, PIPELINES)
# test mode assertion
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', mode='unknown')
build_from_cfg(cfg, PIPELINES)
# test fill_std assertion
with pytest.raises(AssertionError):
cfg = dict(type='RandomErasing', fill_std='unknown')
build_from_cfg(cfg, PIPELINES)
# test implicit conversion of aspect_range
cfg = dict(type='RandomErasing', aspect_range=0.5)
random_erasing = build_from_cfg(cfg, PIPELINES)
assert random_erasing.aspect_range == (0.5, 2.)
cfg = dict(type='RandomErasing', aspect_range=2.)
random_erasing = build_from_cfg(cfg, PIPELINES)
assert random_erasing.aspect_range == (0.5, 2.)
# test implicit conversion of fill_color
cfg = dict(type='RandomErasing', fill_color=15)
random_erasing = build_from_cfg(cfg, PIPELINES)
assert random_erasing.fill_color == [15, 15, 15]
# test implicit conversion of fill_std
cfg = dict(type='RandomErasing', fill_std=0.5)
random_erasing = build_from_cfg(cfg, PIPELINES)
assert random_erasing.fill_std == [0.5, 0.5, 0.5]
# test when erase_prob=0.
results = construct_toy_data()
cfg = dict(
type='RandomErasing',
erase_prob=0.,
mode='const',
fill_color=(255, 255, 255))
random_erasing = build_from_cfg(cfg, PIPELINES)
results = random_erasing(results)
np.testing.assert_array_equal(results['img'], results['ori_img'])
# test mode 'const'
random.seed(0)
np.random.seed(0)
results = construct_toy_data()
cfg = dict(
type='RandomErasing',
erase_prob=1.,
mode='const',
fill_color=(255, 255, 255))
random_erasing = build_from_cfg(cfg, PIPELINES)
results = random_erasing(results)
expect_out = np.array([[1, 255, 3, 4], [5, 255, 7, 8], [9, 10, 11, 12]],
dtype=np.uint8)
expect_out = np.stack([expect_out] * 3, axis=-1)
np.testing.assert_array_equal(results['img'], expect_out)
# test mode 'rand' with normal distribution
random.seed(0)
np.random.seed(0)
results = construct_toy_data()
cfg = dict(type='RandomErasing', erase_prob=1., mode='rand')
random_erasing = build_from_cfg(cfg, PIPELINES)
results = random_erasing(results)
expect_out = results['ori_img']
expect_out[:2, 1] = [[159, 98, 76], [14, 69, 122]]
np.testing.assert_array_equal(results['img'], expect_out)
# test mode 'rand' with uniform distribution
random.seed(0)
np.random.seed(0)
results = construct_toy_data()
cfg = dict(
type='RandomErasing',
erase_prob=1.,
mode='rand',
fill_std=(10, 255, 0))
random_erasing = build_from_cfg(cfg, PIPELINES)
results = random_erasing(results)
expect_out = results['ori_img']
expect_out[:2, 1] = [[113, 255, 128], [126, 83, 128]]
np.testing.assert_array_equal(results['img'], expect_out)
def test_color_jitter():
# read test image
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img2'] = copy.deepcopy(img)
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img', 'img2']
def reset_results(results, original_img):
results['img'] = copy.deepcopy(original_img)
results['img2'] = copy.deepcopy(original_img)
results['img_shape'] = original_img.shape
results['ori_shape'] = original_img.shape
return results
transform = dict(
type='ColorJitter', brightness=0., contrast=0., saturation=0.)
colorjitter_module = build_from_cfg(transform, PIPELINES)
results = colorjitter_module(results)
assert np.equal(results['img'], original_img).all()
assert np.equal(results['img'], results['img2']).all()
results = reset_results(results, original_img)
transform = dict(
type='ColorJitter', brightness=0.3, contrast=0.3, saturation=0.3)
colorjitter_module = build_from_cfg(transform, PIPELINES)
results = colorjitter_module(results)
assert not np.equal(results['img'], original_img).all()
def test_lighting():
# test assertion if eigval or eigvec is wrong type or length
with pytest.raises(AssertionError):
transform = dict(type='Lighting', eigval=1, eigvec=[[1, 0, 0]])
build_from_cfg(transform, PIPELINES)
with pytest.raises(AssertionError):
transform = dict(type='Lighting', eigval=[1], eigvec=[1, 0, 0])
build_from_cfg(transform, PIPELINES)
with pytest.raises(AssertionError):
transform = dict(
type='Lighting', eigval=[1, 2], eigvec=[[1, 0, 0], [0, 1]])
build_from_cfg(transform, PIPELINES)
# read test image
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img2'] = copy.deepcopy(img)
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['img_fields'] = ['img', 'img2']
def reset_results(results, original_img):
results['img'] = copy.deepcopy(original_img)
results['img2'] = copy.deepcopy(original_img)
results['img_shape'] = original_img.shape
results['ori_shape'] = original_img.shape
return results
eigval = [0.2175, 0.0188, 0.0045]
eigvec = [[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]]
transform = dict(type='Lighting', eigval=eigval, eigvec=eigvec)
lightening_module = build_from_cfg(transform, PIPELINES)
results = lightening_module(results)
assert not np.equal(results['img'], results['img2']).all()
assert results['img'].dtype == float
assert results['img2'].dtype == float
results = reset_results(results, original_img)
transform = dict(
type='Lighting',
eigval=eigval,
eigvec=eigvec,
alphastd=0.,
to_rgb=False)
lightening_module = build_from_cfg(transform, PIPELINES)
results = lightening_module(results)
assert np.equal(results['img'], original_img).all()
assert np.equal(results['img'], results['img2']).all()
assert results['img'].dtype == float
assert results['img2'].dtype == float
def test_albu_transform():
results = dict(
img_prefix=osp.join(osp.dirname(__file__), '../../data'),
img_info=dict(filename='color.jpg'))
# Define simple pipeline
load = dict(type='LoadImageFromFile')
load = build_from_cfg(load, PIPELINES)
albu_transform = dict(
type='Albu', transforms=[dict(type='ChannelShuffle', p=1)])
albu_transform = build_from_cfg(albu_transform, PIPELINES)
normalize = dict(type='Normalize', mean=[0] * 3, std=[0] * 3, to_rgb=True)
normalize = build_from_cfg(normalize, PIPELINES)
# Execute transforms
results = load(results)
results = albu_transform(results)
results = normalize(results)
assert results['img'].dtype == np.float32