mmpretrain/configs/repmlp/repmlp-base_8xb64_in1k-256p...

28 lines
852 B
Python

_base_ = [
'../_base_/models/repmlp-base_224.py',
'../_base_/datasets/imagenet_bs64_mixer_224.py',
'../_base_/schedules/imagenet_bs4096_AdamW.py',
'../_base_/default_runtime.py'
]
default_hooks = dict(optimizer=dict(grad_clip=dict(max_norm=1.0)))
model = dict(backbone=dict(img_size=256))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale_factor=(256 * 256 // 224, -1),
keep_ratio=True,
backend='pillow'),
dict(type='CenterCrop', crop_size=256),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))