mmpretrain/configs/efficientnet/efficientnet-l2_8xb8_in1k-8...

25 lines
770 B
Python

_base_ = [
'../_base_/models/efficientnet_l2.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py',
'../_base_/default_runtime.py',
]
# dataset settings
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=800),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=800),
dict(type='PackInputs'),
]
train_dataloader = dict(batch_size=8, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline))