58 lines
1.5 KiB
Python
58 lines
1.5 KiB
Python
_base_ = [
|
|
'../_base_/datasets/imagenet_bs32_simclr.py',
|
|
'../_base_/schedules/imagenet_lars_coslr_200e.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='SimCLR',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
norm_cfg=dict(type='SyncBN'),
|
|
zero_init_residual=True),
|
|
neck=dict(
|
|
type='NonLinearNeck', # SimCLR non-linear neck
|
|
in_channels=2048,
|
|
hid_channels=2048,
|
|
out_channels=128,
|
|
num_layers=2,
|
|
with_avg_pool=True),
|
|
head=dict(
|
|
type='ContrastiveHead',
|
|
loss=dict(type='CrossEntropyLoss'),
|
|
temperature=0.1),
|
|
)
|
|
|
|
# optimizer
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(type='LARS', lr=4.8, momentum=0.9, weight_decay=1e-6),
|
|
paramwise_cfg=dict(
|
|
custom_keys={
|
|
'bn': dict(decay_mult=0, lars_exclude=True),
|
|
'bias': dict(decay_mult=0, lars_exclude=True),
|
|
# bn layer in ResNet block downsample module
|
|
'downsample.1': dict(decay_mult=0, lars_exclude=True),
|
|
}))
|
|
|
|
# learning rate scheduler
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1e-4,
|
|
by_epoch=True,
|
|
begin=0,
|
|
end=10,
|
|
convert_to_iter_based=True),
|
|
dict(
|
|
type='CosineAnnealingLR', T_max=790, by_epoch=True, begin=10, end=800)
|
|
]
|
|
|
|
# runtime settings
|
|
train_cfg = dict(max_epochs=800)
|
|
default_hooks = dict(
|
|
# only keeps the latest 3 checkpoints
|
|
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))
|