mmpretrain/tests/test_models/test_losses.py

404 lines
14 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmpretrain.models import build_loss
def test_asymmetric_loss():
# test asymmetric_loss
cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
label = torch.Tensor([[1, 0, 1], [0, 1, 0]])
weight = torch.tensor([0.5, 0.5])
loss_cfg = dict(
type='AsymmetricLoss',
gamma_pos=1.0,
gamma_neg=4.0,
clip=0.05,
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(3.80845 / 3))
# test asymmetric_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(3.80845 / 6))
# test asymmetric_loss without clip
loss_cfg = dict(
type='AsymmetricLoss',
gamma_pos=1.0,
gamma_neg=4.0,
clip=None,
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(5.1186 / 3))
# test asymmetric_loss with softmax for single label task
cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
label = torch.Tensor([0, 1])
weight = torch.tensor([0.5, 0.5])
loss_cfg = dict(
type='AsymmetricLoss',
gamma_pos=0.0,
gamma_neg=0.0,
clip=None,
reduction='mean',
loss_weight=1.0,
use_sigmoid=False,
eps=1e-8)
loss = build_loss(loss_cfg)
# test asymmetric_loss for single label task without weight
assert torch.allclose(loss(cls_score, label), torch.tensor(2.5045))
# test asymmetric_loss for single label task with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(2.5045 * 0.5))
# test soft asymmetric_loss with softmax
cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
label = torch.Tensor([[1, 0, 0], [0, 1, 0]])
weight = torch.tensor([0.5, 0.5])
loss_cfg = dict(
type='AsymmetricLoss',
gamma_pos=0.0,
gamma_neg=0.0,
clip=None,
reduction='mean',
loss_weight=1.0,
use_sigmoid=False,
eps=1e-8)
loss = build_loss(loss_cfg)
# test soft asymmetric_loss with softmax without weight
assert torch.allclose(loss(cls_score, label), torch.tensor(2.5045))
# test soft asymmetric_loss with softmax with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(2.5045 * 0.5))
def test_cross_entropy_loss():
with pytest.raises(AssertionError):
# use_sigmoid and use_soft could not be set simultaneously
loss_cfg = dict(
type='CrossEntropyLoss', use_sigmoid=True, use_soft=True)
loss = build_loss(loss_cfg)
# test ce_loss
cls_score = torch.Tensor([[-1000, 1000], [100, -100]])
label = torch.Tensor([0, 1]).long()
class_weight = [0.3, 0.7] # class 0 : 0.3, class 1 : 0.7
weight = torch.tensor([0.6, 0.4])
# test ce_loss without class weight
loss_cfg = dict(type='CrossEntropyLoss', reduction='mean', loss_weight=1.0)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(1100.))
# test ce_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(640.))
# test ce_loss with class weight
loss_cfg = dict(
type='CrossEntropyLoss',
reduction='mean',
loss_weight=1.0,
class_weight=class_weight)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(370.))
# test ce_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(208.))
# test bce_loss
cls_score = torch.Tensor([[-200, 100], [500, -1000], [300, -300]])
label = torch.Tensor([[1, 0], [0, 1], [1, 0]])
weight = torch.Tensor([0.6, 0.4, 0.5])
class_weight = [0.1, 0.9] # class 0: 0.1, class 1: 0.9
pos_weight = [0.1, 0.2]
# test bce_loss without class weight
loss_cfg = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(300.))
# test ce_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(130.))
# test bce_loss with class weight
loss_cfg = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=1.0,
class_weight=class_weight)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(176.667))
# test bce_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(74.333))
# test bce loss with pos_weight
loss_cfg = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=1.0,
pos_weight=pos_weight)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(136.6667))
# test soft_ce_loss
cls_score = torch.Tensor([[-1000, 1000], [100, -100]])
label = torch.Tensor([[1.0, 0.0], [0.0, 1.0]])
class_weight = [0.3, 0.7] # class 0 : 0.3, class 1 : 0.7
weight = torch.tensor([0.6, 0.4])
# test soft_ce_loss without class weight
loss_cfg = dict(
type='CrossEntropyLoss',
use_soft=True,
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(1100.))
# test soft_ce_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(640.))
# test soft_ce_loss with class weight
loss_cfg = dict(
type='CrossEntropyLoss',
use_soft=True,
reduction='mean',
loss_weight=1.0,
class_weight=class_weight)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(370.))
# test soft_ce_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(208.))
def test_focal_loss():
# test focal_loss
cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
label = torch.Tensor([[1, 0, 1], [0, 1, 0]])
weight = torch.tensor([0.5, 0.5])
loss_cfg = dict(
type='FocalLoss',
gamma=2.0,
alpha=0.25,
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
assert torch.allclose(loss(cls_score, label), torch.tensor(0.8522))
# test focal_loss with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(0.8522 / 2))
# test focal loss for single label task
cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
label = torch.Tensor([0, 1])
weight = torch.tensor([0.5, 0.5])
assert torch.allclose(loss(cls_score, label), torch.tensor(0.86664125))
# test focal_loss single label with weight
assert torch.allclose(
loss(cls_score, label, weight=weight), torch.tensor(0.86664125 / 2))
def test_label_smooth_loss():
# test label_smooth_val assertion
with pytest.raises(AssertionError):
loss_cfg = dict(type='LabelSmoothLoss', label_smooth_val=1.0)
build_loss(loss_cfg)
with pytest.raises(AssertionError):
loss_cfg = dict(type='LabelSmoothLoss', label_smooth_val='str')
build_loss(loss_cfg)
# test reduction assertion
with pytest.raises(AssertionError):
loss_cfg = dict(
type='LabelSmoothLoss', label_smooth_val=0.1, reduction='unknown')
build_loss(loss_cfg)
# test mode assertion
with pytest.raises(AssertionError):
loss_cfg = dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='unknown')
build_loss(loss_cfg)
# test original mode label smooth loss
cls_score = torch.tensor([[1., -1.]])
label = torch.tensor([0])
loss_cfg = dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
correct = 0.2269 # from timm
assert loss(cls_score, label) - correct <= 0.0001
loss_cfg = dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
use_sigmoid=True,
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
correct = 0.3633 # from timm
assert loss(cls_score, label) - correct <= 0.0001
# test classy_vision mode label smooth loss
loss_cfg = dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='classy_vision',
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
correct = 0.2178 # from ClassyVision
assert loss(cls_score, label) - correct <= 0.0001
# test multi_label mode label smooth loss
cls_score = torch.tensor([[1., -1., 1]])
label = torch.tensor([[1, 0, 1]])
loss_cfg = dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='multi_label',
reduction='mean',
loss_weight=1.0)
loss = build_loss(loss_cfg)
smooth_label = torch.tensor([[0.9, 0.1, 0.9]])
correct = torch.binary_cross_entropy_with_logits(cls_score,
smooth_label).mean()
assert torch.allclose(loss(cls_score, label), correct)
# test label linear combination smooth loss
cls_score = torch.tensor([[1., -1., 0.]])
label1 = torch.tensor([[1., 0., 0.]])
label2 = torch.tensor([[0., 0., 1.]])
label_mix = label1 * 0.6 + label2 * 0.4
loss_cfg = dict(
type='LabelSmoothLoss',
label_smooth_val=0.1,
mode='original',
reduction='mean',
num_classes=3,
loss_weight=1.0)
loss = build_loss(loss_cfg)
smooth_label1 = loss.original_smooth_label(label1)
smooth_label2 = loss.original_smooth_label(label2)
label_smooth_mix = smooth_label1 * 0.6 + smooth_label2 * 0.4
correct = (-torch.log_softmax(cls_score, -1) * label_smooth_mix).sum()
assert loss(cls_score, label_mix) - correct <= 0.0001
# test label smooth loss with weight
cls_score = torch.tensor([[1., -1.], [1., -1.]])
label = torch.tensor([0, 1])
weight = torch.tensor([0.5, 0.5])
loss_cfg = dict(
type='LabelSmoothLoss',
reduction='mean',
label_smooth_val=0.1,
loss_weight=1.0)
loss = build_loss(loss_cfg)
assert torch.allclose(
loss(cls_score, label, weight=weight),
loss(cls_score, label) / 2)
# migrate from mmdetection with modifications
def test_seesaw_loss():
# only softmax version of Seesaw Loss is implemented
with pytest.raises(AssertionError):
loss_cfg = dict(type='SeesawLoss', use_sigmoid=True, loss_weight=1.0)
build_loss(loss_cfg)
# test that cls_score.size(-1) == num_classes
loss_cls_cfg = dict(
type='SeesawLoss', p=0.0, q=0.0, loss_weight=1.0, num_classes=2)
loss_cls = build_loss(loss_cls_cfg)
# the length of fake_pred should be num_classe = 4
with pytest.raises(AssertionError):
fake_pred = torch.Tensor([[-100, 100, -100]])
fake_label = torch.Tensor([1]).long()
loss_cls(fake_pred, fake_label)
# the length of fake_pred should be num_classes + 2 = 4
with pytest.raises(AssertionError):
fake_pred = torch.Tensor([[-100, 100, -100, 100]])
fake_label = torch.Tensor([1]).long()
loss_cls(fake_pred, fake_label)
# test the calculation without p and q
loss_cls_cfg = dict(
type='SeesawLoss', p=0.0, q=0.0, loss_weight=1.0, num_classes=2)
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[-100, 100]])
fake_label = torch.Tensor([1]).long()
loss = loss_cls(fake_pred, fake_label)
assert torch.allclose(loss, torch.tensor(0.))
# test the calculation with p and without q
loss_cls_cfg = dict(
type='SeesawLoss', p=1.0, q=0.0, loss_weight=1.0, num_classes=2)
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[-100, 100]])
fake_label = torch.Tensor([0]).long()
loss_cls.cum_samples[0] = torch.exp(torch.Tensor([20]))
loss = loss_cls(fake_pred, fake_label)
assert torch.allclose(loss, torch.tensor(180.))
# test the calculation with q and without p
loss_cls_cfg = dict(
type='SeesawLoss', p=0.0, q=1.0, loss_weight=1.0, num_classes=2)
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[-100, 100]])
fake_label = torch.Tensor([0]).long()
loss = loss_cls(fake_pred, fake_label)
assert torch.allclose(loss, torch.tensor(200.) + torch.tensor(100.).log())
def test_reconstruction_loss():
# test L2 loss
loss_config = dict(type='PixelReconstructionLoss', criterion='L2')
loss = build_loss(loss_config)
fake_pred = torch.rand((2, 196, 768))
fake_target = torch.rand((2, 196, 768))
fake_mask = torch.ones((2, 196))
loss_value = loss(fake_pred, fake_target, fake_mask)
assert isinstance(loss_value.item(), float)
# test L1 loss
loss_config = dict(
type='PixelReconstructionLoss', criterion='L1', channel=3)
loss = build_loss(loss_config)
fake_pred = torch.rand((2, 3, 192, 192))
fake_target = torch.rand((2, 3, 192, 192))
fake_mask = torch.ones((2, 1, 192, 192))
loss_value = loss(fake_pred, fake_target, fake_mask)
assert isinstance(loss_value.item(), float)
with pytest.raises(NotImplementedError):
loss_config = dict(type='PixelReconstructionLoss', criterion='L3')
loss = build_loss(loss_config)