mmpretrain/tests/test_models/test_utils/test_embed.py

89 lines
3.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmpretrain.models.backbones import VGG
from mmpretrain.models.utils import HybridEmbed, PatchEmbed, PatchMerging
def cal_unfold_dim(dim, kernel_size, stride, padding=0, dilation=1):
return (dim + 2 * padding - dilation * (kernel_size - 1) - 1) // stride + 1
def test_patch_embed():
# Test PatchEmbed
patch_embed = PatchEmbed()
img = torch.randn(1, 3, 224, 224)
img = patch_embed(img)
assert img.shape == torch.Size((1, 196, 768))
# Test PatchEmbed with stride = 8
conv_cfg = dict(kernel_size=16, stride=8)
patch_embed = PatchEmbed(conv_cfg=conv_cfg)
img = torch.randn(1, 3, 224, 224)
img = patch_embed(img)
assert img.shape == torch.Size((1, 729, 768))
def test_hybrid_embed():
# Test VGG11 HybridEmbed
backbone = VGG(11, norm_eval=True)
backbone.init_weights()
patch_embed = HybridEmbed(backbone)
img = torch.randn(1, 3, 224, 224)
img = patch_embed(img)
assert img.shape == torch.Size((1, 49, 768))
def test_patch_merging():
settings = dict(in_channels=16, out_channels=32, padding=0)
downsample = PatchMerging(**settings)
# test forward with wrong dims
with pytest.raises(AssertionError):
inputs = torch.rand((1, 16, 56 * 56))
downsample(inputs, input_size=(56, 56))
# test patch merging forward
inputs = torch.rand((1, 56 * 56, 16))
out, output_size = downsample(inputs, input_size=(56, 56))
assert output_size == (28, 28)
assert out.shape == (1, 28 * 28, 32)
# test different kernel_size in each direction
downsample = PatchMerging(kernel_size=(2, 3), **settings)
out, output_size = downsample(inputs, input_size=(56, 56))
expected_dim = cal_unfold_dim(56, 2, 2) * cal_unfold_dim(56, 3, 3)
assert downsample.sampler.kernel_size == (2, 3)
assert output_size == (cal_unfold_dim(56, 2, 2), cal_unfold_dim(56, 3, 3))
assert out.shape == (1, expected_dim, 32)
# test default stride
downsample = PatchMerging(kernel_size=6, **settings)
assert downsample.sampler.stride == (6, 6)
# test stride=3
downsample = PatchMerging(kernel_size=6, stride=3, **settings)
out, output_size = downsample(inputs, input_size=(56, 56))
assert downsample.sampler.stride == (3, 3)
assert out.shape == (1, cal_unfold_dim(56, 6, stride=3)**2, 32)
# test padding
downsample = PatchMerging(
in_channels=16, out_channels=32, kernel_size=6, padding=2)
out, output_size = downsample(inputs, input_size=(56, 56))
assert downsample.sampler.padding == (2, 2)
assert out.shape == (1, cal_unfold_dim(56, 6, 6, padding=2)**2, 32)
# test str padding
downsample = PatchMerging(in_channels=16, out_channels=32, kernel_size=6)
out, output_size = downsample(inputs, input_size=(56, 56))
assert downsample.sampler.padding == (0, 0)
assert out.shape == (1, cal_unfold_dim(56, 6, 6, padding=2)**2, 32)
# test dilation
downsample = PatchMerging(kernel_size=6, dilation=2, **settings)
out, output_size = downsample(inputs, input_size=(56, 56))
assert downsample.sampler.dilation == (2, 2)
assert out.shape == (1, cal_unfold_dim(56, 6, 6, dilation=2)**2, 32)