2.5 KiB
2.5 KiB
Hyper-parameter Scheduler Visualization
This tool aims to help the user to check the hyper-parameter scheduler of the optimizer(without training), which support the "learning rate" or "momentum"
Introduce the scheduler visualization tool
python tools/visualization/vis_scheduler.py \
${CONFIG_FILE} \
[-p, --parameter ${PARAMETER_NAME}] \
[-d, --dataset-size ${DATASET_SIZE}] \
[-n, --ngpus ${NUM_GPUs}] \
[-s, --save-path ${SAVE_PATH}] \
[--title ${TITLE}] \
[--style ${STYLE}] \
[--window-size ${WINDOW_SIZE}] \
[--cfg-options]
Description of all arguments:
config
: The path of a model config file.-p, --parameter
: The param to visualize its change curve, choose from "lr" and "momentum". Default to use "lr".-d, --dataset-size
: The size of the datasets. If set,build_dataset
will be skipped and${DATASET_SIZE}
will be used as the size. Default to use the functionbuild_dataset
.-n, --ngpus
: The number of GPUs used in training, default to be 1.-s, --save-path
: The learning rate curve plot save path, default not to save.--title
: Title of figure. If not set, default to be config file name.--style
: Style of plt. If not set, default to bewhitegrid
.--window-size
: The shape of the display window. If not specified, it will be set to12*7
. If used, it must be in the format'W*H'
.--cfg-options
: Modifications to the configuration file, refer to Learn about Configs.
Loading annotations maybe consume much time, you can directly specify the size of the dataset with `-d, dataset-size` to save time.
How to plot the learning rate curve without training
You can use the following command to plot the step learning rate schedule used in the config configs/resnet/resnet50_b16x8_cifar100.py
:
python tools/visualization/vis_scheduler.py configs/resnet/resnet50_b16x8_cifar100.py

When using ImageNet, directly specify the size of ImageNet, as below:
python tools/visualization/vis_scheduler.py configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py --dataset-size 1281167 --ngpus 4 --save-path ./repvgg-B3g4_4xb64-lr.jpg
