mmpretrain/tests/test_visualization/test_visualizer.py

201 lines
6.7 KiB
Python

# Copyright (c) Open-MMLab. All rights reserved.
import os.path as osp
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import torch
from mmpretrain.structures import DataSample
from mmpretrain.visualization import UniversalVisualizer
class TestUniversalVisualizer(TestCase):
def setUp(self) -> None:
super().setUp()
tmpdir = tempfile.TemporaryDirectory()
self.tmpdir = tmpdir
self.vis = UniversalVisualizer(
save_dir=tmpdir.name,
vis_backends=[dict(type='LocalVisBackend')],
)
def test_visualize_cls(self):
image = np.ones((10, 10, 3), np.uint8)
data_sample = DataSample().set_gt_label(1).set_pred_label(1).\
set_pred_score(torch.tensor([0.1, 0.8, 0.1]))
# Test show
def mock_show(drawn_img, win_name, wait_time):
self.assertFalse((image == drawn_img).all())
self.assertEqual(win_name, 'test_cls')
self.assertEqual(wait_time, 0)
with patch.object(self.vis, 'show', mock_show):
self.vis.visualize_cls(
image=image,
data_sample=data_sample,
show=True,
name='test_cls',
step=1)
# Test storage backend.
save_file = osp.join(self.tmpdir.name,
'vis_data/vis_image/test_cls_1.png')
self.assertTrue(osp.exists(save_file))
# Test out_file
out_file = osp.join(self.tmpdir.name, 'results.png')
self.vis.visualize_cls(
image=image, data_sample=data_sample, out_file=out_file)
self.assertTrue(osp.exists(out_file))
# Test with dataset_meta
self.vis.dataset_meta = {'classes': ['cat', 'bird', 'dog']}
def patch_texts(text, *_, **__):
self.assertEqual(
text, '\n'.join([
'Ground truth: 1 (bird)',
'Prediction: 1, 0.80 (bird)',
]))
with patch.object(self.vis, 'draw_texts', patch_texts):
self.vis.visualize_cls(image, data_sample)
# Test without pred_label
def patch_texts(text, *_, **__):
self.assertEqual(text, '\n'.join([
'Ground truth: 1 (bird)',
]))
with patch.object(self.vis, 'draw_texts', patch_texts):
self.vis.visualize_cls(image, data_sample, draw_pred=False)
# Test without gt_label
def patch_texts(text, *_, **__):
self.assertEqual(text, '\n'.join([
'Prediction: 1, 0.80 (bird)',
]))
with patch.object(self.vis, 'draw_texts', patch_texts):
self.vis.visualize_cls(image, data_sample, draw_gt=False)
# Test without score
del data_sample.pred_score
def patch_texts(text, *_, **__):
self.assertEqual(
text, '\n'.join([
'Ground truth: 1 (bird)',
'Prediction: 1 (bird)',
]))
with patch.object(self.vis, 'draw_texts', patch_texts):
self.vis.visualize_cls(image, data_sample)
# Test adaptive font size
def assert_font_size(target_size):
def draw_texts(text, font_sizes, *_, **__):
self.assertEqual(font_sizes, target_size)
return draw_texts
with patch.object(self.vis, 'draw_texts', assert_font_size(7)):
self.vis.visualize_cls(
np.ones((224, 384, 3), np.uint8), data_sample)
with patch.object(self.vis, 'draw_texts', assert_font_size(2)):
self.vis.visualize_cls(
np.ones((10, 384, 3), np.uint8), data_sample)
with patch.object(self.vis, 'draw_texts', assert_font_size(21)):
self.vis.visualize_cls(
np.ones((1000, 1000, 3), np.uint8), data_sample)
# Test rescale image
with patch.object(self.vis, 'draw_texts', assert_font_size(14)):
self.vis.visualize_cls(
np.ones((224, 384, 3), np.uint8),
data_sample,
rescale_factor=2.)
def test_visualize_image_retrieval(self):
image = np.ones((10, 10, 3), np.uint8)
data_sample = DataSample().set_pred_score([0.1, 0.8, 0.1])
class ToyPrototype:
def get_data_info(self, idx):
img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
return {'img_path': img_path, 'sample_idx': idx}
prototype_dataset = ToyPrototype()
# Test show
def mock_show(drawn_img, win_name, wait_time):
if image.shape == drawn_img.shape:
self.assertFalse((image == drawn_img).all())
self.assertEqual(win_name, 'test_retrieval')
self.assertEqual(wait_time, 0)
with patch.object(self.vis, 'show', mock_show):
self.vis.visualize_image_retrieval(
image,
data_sample,
prototype_dataset,
show=True,
name='test_retrieval',
step=1)
# Test storage backend.
save_file = osp.join(self.tmpdir.name,
'vis_data/vis_image/test_retrieval_1.png')
self.assertTrue(osp.exists(save_file))
# Test out_file
out_file = osp.join(self.tmpdir.name, 'results.png')
self.vis.visualize_image_retrieval(
image,
data_sample,
prototype_dataset,
out_file=out_file,
)
self.assertTrue(osp.exists(out_file))
def test_visualize_masked_image(self):
image = np.ones((10, 10, 3), np.uint8)
data_sample = DataSample().set_mask(
torch.tensor([
[0, 0, 1, 1],
[0, 1, 1, 0],
[1, 1, 0, 0],
[1, 0, 0, 1],
]))
# Test show
def mock_show(drawn_img, win_name, wait_time):
self.assertTupleEqual(drawn_img.shape, (224, 224, 3))
self.assertEqual(win_name, 'test_mask')
self.assertEqual(wait_time, 0)
with patch.object(self.vis, 'show', mock_show):
self.vis.visualize_masked_image(
image, data_sample, show=True, name='test_mask', step=1)
# Test storage backend.
save_file = osp.join(self.tmpdir.name,
'vis_data/vis_image/test_mask_1.png')
self.assertTrue(osp.exists(save_file))
# Test out_file
out_file = osp.join(self.tmpdir.name, 'results.png')
self.vis.visualize_masked_image(image, data_sample, out_file=out_file)
self.assertTrue(osp.exists(out_file))
def tearDown(self):
self.tmpdir.cleanup()