mmpretrain/tools/analysis_tools/analyze_results.py

125 lines
4.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from pathlib import Path
import mmcv
import mmengine
import torch
from mmengine import DictAction
from mmpretrain.datasets import build_dataset
from mmpretrain.structures import ClsDataSample
from mmpretrain.visualization import UniversalVisualizer
def parse_args():
parser = argparse.ArgumentParser(
description='MMCls evaluate prediction success/fail')
parser.add_argument('config', help='test config file path')
parser.add_argument('result', help='test result json/pkl file')
parser.add_argument('--out-dir', help='dir to store output files')
parser.add_argument(
'--topk',
default=20,
type=int,
help='Number of images to select for success/fail')
parser.add_argument(
'--rescale-factor',
'-r',
type=float,
help='image rescale factor, which is useful if the output is too '
'large or too small.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def save_imgs(result_dir, folder_name, results, dataset, rescale_factor=None):
full_dir = osp.join(result_dir, folder_name)
vis = UniversalVisualizer()
vis.dataset_meta = {'classes': dataset.CLASSES}
# save imgs
for result in results:
data_sample = ClsDataSample()\
.set_gt_label(result['gt_label'])\
.set_pred_label(result['pred_label'])\
.set_pred_score(result['pred_scores'])
data_info = dataset.get_data_info(result['sample_idx'])
if 'img' in data_info:
img = data_info['img']
name = str(result['sample_idx'])
elif 'img_path' in data_info:
img = mmcv.imread(data_info['img_path'], channel_order='rgb')
name = Path(data_info['img_path']).name
else:
raise ValueError('Cannot load images from the dataset infos.')
if rescale_factor is not None:
img = mmcv.imrescale(img, rescale_factor)
vis.visualize_cls(
img, data_sample, out_file=osp.join(full_dir, name + '.png'))
for k, v in result.items():
if isinstance(v, torch.Tensor):
result[k] = v.tolist()
mmengine.dump(results, osp.join(full_dir, folder_name + '.json'))
def main():
args = parse_args()
# load test results
outputs = mmengine.load(args.result)
cfg = mmengine.Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# build the dataloader
cfg.test_dataloader.dataset.pipeline = []
dataset = build_dataset(cfg.test_dataloader.dataset)
outputs_list = list()
for i in range(len(outputs)):
output = dict()
output['sample_idx'] = outputs[i]['sample_idx']
output['gt_label'] = outputs[i]['gt_label']['label']
output['pred_score'] = float(
torch.max(outputs[i]['pred_label']['score']).item())
output['pred_scores'] = outputs[i]['pred_label']['score']
output['pred_label'] = outputs[i]['pred_label']['label']
outputs_list.append(output)
# sort result
outputs_list = sorted(outputs_list, key=lambda x: x['pred_score'])
success = list()
fail = list()
for output in outputs_list:
if output['pred_label'] == output['gt_label']:
success.append(output)
else:
fail.append(output)
success = success[:args.topk]
fail = fail[:args.topk]
save_imgs(args.out_dir, 'success', success, dataset, args.rescale_factor)
save_imgs(args.out_dir, 'fail', fail, dataset, args.rescale_factor)
if __name__ == '__main__':
main()