100 lines
3.0 KiB
Python
100 lines
3.0 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
from collections import OrderedDict
|
|
|
|
import mmengine
|
|
import torch
|
|
from mmengine.runner import CheckpointLoader
|
|
|
|
|
|
def convert_revvit(ckpt):
|
|
|
|
new_ckpt = OrderedDict()
|
|
|
|
for k, v in list(ckpt.items()):
|
|
new_v = v
|
|
if k.startswith('head.projection'):
|
|
new_k = k.replace('head.projection', 'head.fc')
|
|
new_ckpt[new_k] = new_v
|
|
continue
|
|
elif k.startswith('patch_embed'):
|
|
if 'proj.' in k:
|
|
new_k = k.replace('proj.', 'projection.')
|
|
else:
|
|
new_k = k
|
|
elif k.startswith('rev_backbone'):
|
|
new_k = k.replace('rev_backbone.', '')
|
|
if 'F.norm' in k:
|
|
new_k = new_k.replace('F.norm', 'ln1')
|
|
elif 'G.norm' in k:
|
|
new_k = new_k.replace('G.norm', 'ln2')
|
|
elif 'F.attn' in k:
|
|
new_k = new_k.replace('F.attn', 'attn')
|
|
elif 'G.mlp.fc1' in k:
|
|
new_k = new_k.replace('G.mlp.fc1', 'ffn.layers.0.0')
|
|
elif 'G.mlp.fc2' in k:
|
|
new_k = new_k.replace('G.mlp.fc2', 'ffn.layers.1')
|
|
elif k.startswith('norm'):
|
|
new_k = k.replace('norm', 'ln1')
|
|
else:
|
|
new_k = k
|
|
|
|
if not new_k.startswith('head'):
|
|
new_k = 'backbone.' + new_k
|
|
new_ckpt[new_k] = new_v
|
|
|
|
tmp_weight_dir = []
|
|
tmp_bias_dir = []
|
|
final_ckpt = OrderedDict()
|
|
for k, v in list(new_ckpt.items()):
|
|
if 'attn.q.weight' in k:
|
|
tmp_weight_dir.append(v)
|
|
elif 'attn.k.weight' in k:
|
|
tmp_weight_dir.append(v)
|
|
elif 'attn.v.weight' in k:
|
|
tmp_weight_dir.append(v)
|
|
new_k = k.replace('attn.v.weight', 'attn.qkv.weight')
|
|
final_ckpt[new_k] = torch.cat(tmp_weight_dir, dim=0)
|
|
tmp_weight_dir = []
|
|
elif 'attn.q.bias' in k:
|
|
tmp_bias_dir.append(v)
|
|
elif 'attn.k.bias' in k:
|
|
tmp_bias_dir.append(v)
|
|
elif 'attn.v.bias' in k:
|
|
tmp_bias_dir.append(v)
|
|
new_k = k.replace('attn.v.bias', 'attn.qkv.bias')
|
|
final_ckpt[new_k] = torch.cat(tmp_bias_dir, dim=0)
|
|
tmp_bias_dir = []
|
|
else:
|
|
final_ckpt[k] = v
|
|
|
|
return final_ckpt
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert keys in pretrained revvit'
|
|
' models to mmpretrain style.')
|
|
parser.add_argument('src', help='src model path or url')
|
|
# The dst path must be a full path of the new checkpoint.
|
|
parser.add_argument('dst', help='save path')
|
|
args = parser.parse_args()
|
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
|
|
|
|
if 'model_state' in checkpoint:
|
|
state_dict = checkpoint['model_state']
|
|
else:
|
|
state_dict = checkpoint
|
|
|
|
weight = convert_revvit(state_dict)
|
|
mmengine.mkdir_or_exist(osp.dirname(args.dst))
|
|
torch.save(weight, args.dst)
|
|
|
|
print('Done!!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|