mmpretrain/configs/tnt/tnt_s_patch16_224_evalonly_...

40 lines
1.0 KiB
Python

# accuracy_top-1 : 81.52 accuracy_top-5 : 95.73
_base_ = [
'../_base_/models/tnt_s_patch16_224.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/default_runtime.py'
]
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(248, -1),
interpolation='bicubic',
backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
dataset_type = 'ImageNet'
data = dict(
samples_per_gpu=32, workers_per_gpu=4, test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='AdamW', lr=1e-3, weight_decay=0.05)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup_by_epoch=True,
warmup='linear',
warmup_iters=5,
warmup_ratio=1e-3)
runner = dict(type='EpochBasedRunner', max_epochs=300)