mmpretrain/tests/test_structures/test_datasample.py

109 lines
3.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
import torch
from mmpretrain.structures import DataSample, MultiTaskDataSample
class TestDataSample(TestCase):
def _test_set_label(self, key):
data_sample = DataSample()
method = getattr(data_sample, 'set_' + key)
# Test number
method(1)
self.assertIn(key, data_sample)
label = getattr(data_sample, key)
self.assertIsInstance(label, torch.LongTensor)
# Test tensor with single number
method(torch.tensor(2))
self.assertIn(key, data_sample)
label = getattr(data_sample, key)
self.assertIsInstance(label, torch.LongTensor)
# Test array with single number
method(np.array(3))
self.assertIn(key, data_sample)
label = getattr(data_sample, key)
self.assertIsInstance(label, torch.LongTensor)
# Test tensor
method(torch.tensor([1, 2, 3]))
self.assertIn(key, data_sample)
label = getattr(data_sample, key)
self.assertIsInstance(label, torch.Tensor)
self.assertTrue((label == torch.tensor([1, 2, 3])).all())
# Test array
method(np.array([1, 2, 3]))
self.assertIn(key, data_sample)
label = getattr(data_sample, key)
self.assertTrue((label == torch.tensor([1, 2, 3])).all())
# Test Sequence
method([1, 2, 3])
self.assertIn(key, data_sample)
label = getattr(data_sample, key)
self.assertTrue((label == torch.tensor([1, 2, 3])).all())
# Test unavailable type
with self.assertRaisesRegex(TypeError, "<class 'str'> is not"):
method('hi')
def test_set_gt_label(self):
self._test_set_label('gt_label')
def test_set_pred_label(self):
self._test_set_label('pred_label')
def test_set_gt_score(self):
data_sample = DataSample()
data_sample.set_gt_score(torch.tensor([0.1, 0.1, 0.6, 0.1, 0.1]))
self.assertIn('gt_score', data_sample)
torch.testing.assert_allclose(data_sample.gt_score,
[0.1, 0.1, 0.6, 0.1, 0.1])
# Test invalid length
with self.assertRaisesRegex(AssertionError, 'should be equal to'):
data_sample.set_gt_score([1, 2])
# Test invalid dims
with self.assertRaisesRegex(AssertionError, 'but got 2'):
data_sample.set_gt_score(torch.tensor([[0.1, 0.1, 0.6, 0.1, 0.1]]))
def test_set_pred_score(self):
data_sample = DataSample()
data_sample.set_pred_score(torch.tensor([0.1, 0.1, 0.6, 0.1, 0.1]))
self.assertIn('pred_score', data_sample)
torch.testing.assert_allclose(data_sample.pred_score,
[0.1, 0.1, 0.6, 0.1, 0.1])
# Test invalid length
with self.assertRaisesRegex(AssertionError, 'should be equal to'):
data_sample.set_gt_score([1, 2])
# Test invalid dims
with self.assertRaisesRegex(AssertionError, 'but got 2'):
data_sample.set_pred_score(
torch.tensor([[0.1, 0.1, 0.6, 0.1, 0.1]]))
class TestMultiTaskDataSample(TestCase):
def test_multi_task_data_sample(self):
gt_label = {'task0': {'task00': 1, 'task01': 1}, 'task1': 1}
data_sample = MultiTaskDataSample()
task_sample = DataSample().set_gt_label(gt_label['task1'])
data_sample.set_field(task_sample, 'task1')
data_sample.set_field(MultiTaskDataSample(), 'task0')
for task_name in gt_label['task0']:
task_sample = DataSample().set_gt_label(
gt_label['task0'][task_name])
data_sample.task0.set_field(task_sample, task_name)
self.assertIsInstance(data_sample.task0, MultiTaskDataSample)
self.assertIsInstance(data_sample.task1, DataSample)
self.assertIsInstance(data_sample.task0.task00, DataSample)