mmpretrain/mmcls/models/backbones/lenet.py

43 lines
1.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
@BACKBONES.register_module()
class LeNet5(BaseBackbone):
"""`LeNet5 <https://en.wikipedia.org/wiki/LeNet>`_ backbone.
The input for LeNet-5 is a 32×32 grayscale image.
Args:
num_classes (int): number of classes for classification.
The default value is -1, which uses the backbone as
a feature extractor without the top classifier.
"""
def __init__(self, num_classes=-1):
super(LeNet5, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, stride=1), nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(6, 16, kernel_size=5, stride=1), nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(16, 120, kernel_size=5, stride=1), nn.Tanh())
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Linear(120, 84),
nn.Tanh(),
nn.Linear(84, num_classes),
)
def forward(self, x):
x = self.features(x)
if self.num_classes > 0:
x = self.classifier(x.squeeze())
return (x, )