mmpretrain/mmcls/models/backbones/vision_transformer.py

369 lines
14 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Sequence
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN
from mmcv.runner.base_module import BaseModule, ModuleList
from mmcls.utils import get_root_logger
from ..builder import BACKBONES
from ..utils import MultiheadAttention, PatchEmbed, to_2tuple
from .base_backbone import BaseBackbone
class TransformerEncoderLayer(BaseModule):
"""Implements one encoder layer in Vision Transformer.
Args:
embed_dims (int): The feature dimension
num_heads (int): Parallel attention heads
feedforward_channels (int): The hidden dimension for FFNs
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Defaults to 0.
attn_drop_rate (float): The drop out rate for attention output weights.
Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
num_fcs (int): The number of fully-connected layers for FFNs.
Defaults to 2.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
act_cfg (dict): The activation config for FFNs.
Defaluts to ``dict(type='GELU')``.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
num_fcs=2,
qkv_bias=True,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
init_cfg=None):
super(TransformerEncoderLayer, self).__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, self.embed_dims, postfix=1)
self.add_module(self.norm1_name, norm1)
self.attn = MultiheadAttention(
embed_dims=embed_dims,
num_heads=num_heads,
attn_drop=attn_drop_rate,
proj_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
qkv_bias=qkv_bias)
self.norm2_name, norm2 = build_norm_layer(
norm_cfg, self.embed_dims, postfix=2)
self.add_module(self.norm2_name, norm2)
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=num_fcs,
ffn_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
act_cfg=act_cfg)
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
def init_weights(self):
super(TransformerEncoderLayer, self).init_weights()
for m in self.ffn.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.normal_(m.bias, std=1e-6)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = self.ffn(self.norm2(x), identity=x)
return x
@BACKBONES.register_module()
class VisionTransformer(BaseBackbone):
"""Vision Transformer.
A PyTorch implement of : `An Image is Worth 16x16 Words:
Transformers for Image Recognition at
Scale<https://arxiv.org/abs/2010.11929>`_
Args:
arch (str | dict): Vision Transformer architecture
Default: 'b'
img_size (int | tuple): Input image size
patch_size (int | tuple): The patch size
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Defaults to True.
output_cls_token (bool): Whether output the cls_token. If set True,
`with_cls_token` must be True. Defaults to True.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Defaults to "bicubic".
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
layer_cfgs (Sequence | dict): Configs of each transformer layer in
encoder. Defaults to an empty dict.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(
['s', 'small'], {
'embed_dims': 768,
'num_layers': 8,
'num_heads': 8,
'feedforward_channels': 768 * 3,
'qkv_bias': False
}),
**dict.fromkeys(
['b', 'base'], {
'embed_dims': 768,
'num_layers': 12,
'num_heads': 12,
'feedforward_channels': 3072
}),
**dict.fromkeys(
['l', 'large'], {
'embed_dims': 1024,
'num_layers': 24,
'num_heads': 16,
'feedforward_channels': 4096
}),
}
def __init__(self,
arch='b',
img_size=224,
patch_size=16,
out_indices=-1,
drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN', eps=1e-6),
final_norm=True,
output_cls_token=True,
interpolate_mode='bicubic',
patch_cfg=dict(),
layer_cfgs=dict(),
init_cfg=None):
super(VisionTransformer, self).__init__(init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {
'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels'
}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims = self.arch_settings['embed_dims']
self.num_layers = self.arch_settings['num_layers']
self.img_size = to_2tuple(img_size)
# Set patch embedding
_patch_cfg = dict(
img_size=img_size,
embed_dims=self.embed_dims,
conv_cfg=dict(
type='Conv2d', kernel_size=patch_size, stride=patch_size),
)
_patch_cfg.update(patch_cfg)
self.patch_embed = PatchEmbed(**_patch_cfg)
num_patches = self.patch_embed.num_patches
# Set cls token
self.output_cls_token = output_cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
# Set position embedding
self.interpolate_mode = interpolate_mode
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, self.embed_dims))
self.drop_after_pos = nn.Dropout(p=drop_rate)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = self.num_layers + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
# stochastic depth decay rule
dpr = np.linspace(0, drop_path_rate, self.arch_settings['num_layers'])
self.layers = ModuleList()
if isinstance(layer_cfgs, dict):
layer_cfgs = [layer_cfgs] * self.num_layers
for i in range(self.num_layers):
_layer_cfg = dict(
embed_dims=self.embed_dims,
num_heads=self.arch_settings['num_heads'],
feedforward_channels=self.
arch_settings['feedforward_channels'],
drop_rate=drop_rate,
drop_path_rate=dpr[i],
qkv_bias=self.arch_settings.get('qkv_bias', True),
norm_cfg=norm_cfg)
_layer_cfg.update(layer_cfgs[i])
self.layers.append(TransformerEncoderLayer(**_layer_cfg))
self.final_norm = final_norm
if final_norm:
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, self.embed_dims, postfix=1)
self.add_module(self.norm1_name, norm1)
@property
def norm1(self):
return getattr(self, self.norm1_name)
def init_weights(self):
# Suppress default init if use pretrained model.
# And use custom load_checkpoint function to load checkpoint.
if (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
init_cfg = deepcopy(self.init_cfg)
init_cfg.pop('type')
self._load_checkpoint(**init_cfg)
else:
super(VisionTransformer, self).init_weights()
# Modified from ClassyVision
nn.init.normal_(self.pos_embed, std=0.02)
def _load_checkpoint(self, checkpoint, prefix=None, map_location=None):
from mmcv.runner import (_load_checkpoint,
_load_checkpoint_with_prefix, load_state_dict)
from mmcv.utils import print_log
logger = get_root_logger()
if prefix is None:
print_log(f'load model from: {checkpoint}', logger=logger)
checkpoint = _load_checkpoint(checkpoint, map_location, logger)
# get state_dict from checkpoint
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
else:
print_log(
f'load {prefix} in model from: {checkpoint}', logger=logger)
state_dict = _load_checkpoint_with_prefix(prefix, checkpoint,
map_location)
if 'pos_embed' in state_dict.keys():
ckpt_pos_embed_shape = state_dict['pos_embed'].shape
if self.pos_embed.shape != ckpt_pos_embed_shape:
print_log(
f'Resize the pos_embed shape from {ckpt_pos_embed_shape} '
f'to {self.pos_embed.shape}.',
logger=logger)
ckpt_pos_embed_shape = to_2tuple(
int(np.sqrt(ckpt_pos_embed_shape[1] - 1)))
pos_embed_shape = self.patch_embed.patches_resolution
state_dict['pos_embed'] = self.resize_pos_embed(
state_dict['pos_embed'], ckpt_pos_embed_shape,
pos_embed_shape, self.interpolate_mode)
# load state_dict
load_state_dict(self, state_dict, strict=False, logger=logger)
@staticmethod
def resize_pos_embed(pos_embed, src_shape, dst_shape, mode='bicubic'):
"""Resize pos_embed weights.
Args:
pos_embed (torch.Tensor): Position embedding weights with shape
[1, L, C].
src_shape (tuple): The resolution of downsampled origin training
image.
dst_shape (tuple): The resolution of downsampled new training
image.
mode (str): Algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'``. Default: ``'bicubic'``
Return:
torch.Tensor: The resized pos_embed of shape [1, L_new, C]
"""
assert pos_embed.ndim == 3, 'shape of pos_embed must be [1, L, C]'
_, L, C = pos_embed.shape
src_h, src_w = src_shape
assert L == src_h * src_w + 1
cls_token = pos_embed[:, :1]
src_weight = pos_embed[:, 1:]
src_weight = src_weight.reshape(1, src_h, src_w, C).permute(0, 3, 1, 2)
dst_weight = F.interpolate(
src_weight, size=dst_shape, align_corners=False, mode=mode)
dst_weight = torch.flatten(dst_weight, 2).transpose(1, 2)
return torch.cat((cls_token, dst_weight), dim=1)
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
patch_resolution = self.patch_embed.patches_resolution
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.drop_after_pos(x)
outs = []
for i, layer in enumerate(self.layers):
x = layer(x)
if i == len(self.layers) - 1 and self.final_norm:
x = self.norm1(x)
if i in self.out_indices:
B, _, C = x.shape
patch_token = x[:, 1:].reshape(B, *patch_resolution, C)
patch_token = patch_token.permute(0, 3, 1, 2)
cls_token = x[:, 0]
if self.output_cls_token:
out = [patch_token, cls_token]
else:
out = patch_token
outs.append(out)
return tuple(outs)