mmpretrain/mmcls/datasets/pipelines/formatting.py

282 lines
8.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections.abc import Sequence
import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC
from mmcv.transforms.base import BaseTransform
from PIL import Image
from mmcls.registry import TRANSFORMS
from mmcls.structures import ClsDataSample
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not mmcv.is_str(data):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(
f'Type {type(data)} cannot be converted to tensor.'
'Supported types are: `numpy.ndarray`, `torch.Tensor`, '
'`Sequence`, `int` and `float`')
@TRANSFORMS.register_module()
class PackClsInputs(BaseTransform):
"""Pack the inputs data for the classification.
The ``img_meta`` item is always populated. The contents of the
``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
- ``sample_idx``: id of the image sample
- ``img_path``: path to the image file
- ``ori_shape``: original shape of the image as a tuple (H, W).
- ``img_shape``: shape of the image input to the network as a tuple
(H, W). Note that images may be zero padded on the bottom/right
if the batch tensor is larger than this shape.
- ``scale_factor``: a float indicating the preprocessing scale
- ``flip``: a boolean indicating if image flip transform was used
- ``flip_direction``: the flipping direction
Args:
meta_keys (Sequence[str], optional): The meta keys to saved in the
``metainfo`` of the packed ``data_sample``.
Default: ``('sample_idx', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction')``
"""
def __init__(self,
meta_keys=('sample_idx', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction')):
self.meta_keys = meta_keys
def transform(self, results: dict) -> dict:
"""Method to pack the input data.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict:
- 'inputs' (obj:`torch.Tensor`): The forward data of models.
- 'data_sample' (obj:`ClsDataSample`): The annotation info of the
sample.
"""
packed_results = dict()
if 'img' in results:
img = results['img']
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
img = np.ascontiguousarray(img.transpose(2, 0, 1))
packed_results['inputs'] = to_tensor(img)
else:
warnings.warn(
'Cannot get "img" in the input dict of `PackClsInputs`,'
'please make sure `LoadImageFromFile` has been added '
'in the data pipeline or images have been loaded in '
'the dataset.')
data_sample = ClsDataSample()
if 'gt_label' in results:
gt_label = results['gt_label']
data_sample.set_gt_label(gt_label)
img_meta = {k: results[k] for k in self.meta_keys if k in results}
data_sample.set_metainfo(img_meta)
packed_results['data_sample'] = data_sample
return packed_results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(meta_keys={self.meta_keys})'
return repr_str
@TRANSFORMS.register_module()
class ToTensor(object):
"""Convert objects of various python types to :obj:`torch.Tensor`."""
def __init__(self, keys):
self.keys = keys
def __call__(self, results):
for key in self.keys:
results[key] = to_tensor(results[key])
return results
def __repr__(self):
return self.__class__.__name__ + f'(keys={self.keys})'
@TRANSFORMS.register_module()
class ImageToTensor(object):
"""Convert objects :obj:`PIL.Image` to :obj:`torch.Tensor`."""
def __init__(self, keys):
self.keys = keys
def __call__(self, results):
for key in self.keys:
img = results[key]
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
results[key] = to_tensor(img.transpose(2, 0, 1))
return results
def __repr__(self):
return self.__class__.__name__ + f'(keys={self.keys})'
@TRANSFORMS.register_module()
class Transpose(object):
"""matrix transpose."""
def __init__(self, keys, order):
self.keys = keys
self.order = order
def __call__(self, results):
for key in self.keys:
results[key] = results[key].transpose(self.order)
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(keys={self.keys}, order={self.order})'
@TRANSFORMS.register_module()
class ToPIL(object):
"""Convert tensor to :obj:`PIL.Image`."""
def __init__(self):
pass
def __call__(self, results):
results['img'] = Image.fromarray(results['img'])
return results
@TRANSFORMS.register_module()
class ToNumpy(object):
"""Convert tensor to :obj:`np.ndarray`."""
def __init__(self):
pass
def __call__(self, results):
results['img'] = np.array(results['img'], dtype=np.float32)
return results
@TRANSFORMS.register_module()
class Collect(object):
"""Collect data from the loader relevant to the specific task.
This is usually the last stage of the data loader pipeline. Typically keys
is set to some subset of "img" and "gt_label".
Args:
keys (Sequence[str]): Keys of results to be collected in ``data``.
meta_keys (Sequence[str], optional): Meta keys to be converted to
``mmcv.DataContainer`` and collected in ``data[img_metas]``.
Default: ('filename', 'ori_shape', 'img_shape', 'flip',
'flip_direction', 'img_norm_cfg')
Returns:
dict: The result dict contains the following keys
- keys in ``self.keys``
- ``img_metas`` if available
"""
def __init__(self,
keys,
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'flip', 'flip_direction',
'img_norm_cfg')):
self.keys = keys
self.meta_keys = meta_keys
def __call__(self, results):
data = {}
img_meta = {}
for key in self.meta_keys:
if key in results:
img_meta[key] = results[key]
data['img_metas'] = DC(img_meta, cpu_only=True)
for key in self.keys:
data[key] = results[key]
return data
def __repr__(self):
return self.__class__.__name__ + \
f'(keys={self.keys}, meta_keys={self.meta_keys})'
@TRANSFORMS.register_module()
class WrapFieldsToLists(object):
"""Wrap fields of the data dictionary into lists for evaluation.
This class can be used as a last step of a test or validation
pipeline for single image evaluation or inference.
Example:
>>> test_pipeline = [
>>> dict(type='LoadImageFromFile'),
>>> dict(type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
>>> dict(type='ImageToTensor', keys=['img']),
>>> dict(type='Collect', keys=['img']),
>>> dict(type='WrapIntoLists')
>>> ]
"""
def __call__(self, results):
# Wrap dict fields into lists
for key, val in results.items():
results[key] = [val]
return results
def __repr__(self):
return f'{self.__class__.__name__}()'
@TRANSFORMS.register_module()
class ToHalf(object):
def __init__(self, keys):
self.keys = keys
def __call__(self, results):
for k in self.keys:
if isinstance(results[k], torch.Tensor):
results[k] = results[k].to(torch.half)
else:
results[k] = results[k].astype(np.float16)
return results