mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
* add vgg * add vgg model coversion tool * fix out_indices and docstr * add vgg models in configs * add params, flops and accuracy in docs * add pretrained models url * use ConvModule and refine var names * update vgg conversion tool * modify bn config * add docs for arch_setting * add unit test for vgg * rm debug code * update vgg pretrained models
9.6 KiB
9.6 KiB
Model Zoo
ImageNet
ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.
Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Download |
---|---|---|---|---|---|
VGG-11 | 132.86 | 7.63 | 69.03 | 88.63 | model* |
VGG-13 | 133.05 | 11.34 | 69.93 | 89.26 | model* |
VGG-16 | 138.36 | 15.5 | 71.59 | 90.39 | model* |
VGG-19 | 143.67 | 19.67 | 72.38 | 90.88 | model* |
VGG-11-BN | 132.87 | 7.64 | 70.37 | 89.81 | model* |
VGG-13-BN | 133.05 | 11.36 | 71.55 | 90.37 | model* |
VGG-16-BN | 138.37 | 15.53 | 73.36 | 91.5 | model* |
VGG-19-BN | 143.68 | 19.7 | 74.24 | 91.84 | model* |
ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 | model | log |
ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 | model | log |
ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 | model | log |
ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | model | log |
ResNeSt-50 | 27.48 | 5.41 | 81.13 | 95.59 | model | log |
ResNeSt-101 | 48.28 | 10.27 | 82.32 | 96.24 | model | log |
ResNeSt-200 | 70.2 | 17.53 | 82.41 | 96.22 | model | log |
ResNeSt-269 | 110.93 | 22.58 | 82.70 | 96.28 | model | log |
ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | model | log |
ResNetV1D-50 | 25.58 | 4.36 | 77.4 | 93.66 | model | log |
ResNetV1D-101 | 44.57 | 8.09 | 78.85 | 94.38 | model | log |
ResNetV1D-152 | 60.21 | 11.82 | 79.35 | 94.61 | model | log |
ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.92 | 93.74 | model | log |
ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.7 | 94.34 | model | log |
ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.22 | 94.52 | model | log |
ResNeXt-32x4d-152 | 59.95 | 11.8 | 79.06 | 94.47 | model | log |
SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 | model | log |
SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 | model | log |
ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | model | log |
ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | model | log |
MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | model | log |
Models with * are converted from other repos, others are trained by ourselves.
CIFAR10
Model | Params(M) | Flops(G) | Top-1 (%) | Download |
---|---|---|---|---|
ResNet-18-b16x8 | 11.17 | 0.56 | 94.72 | model | log |
ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | model | log |
ResNet-50-b16x8 | 23.52 | 1.31 | 95.36 | model | log |
ResNet-101-b16x8 | 42.51 | 2.52 | 95.66 | model | log |
ResNet-152-b16x8 | 58.16 | 3.74 | 95.96 | model | log |