mmpretrain/mmcls/models/backbones/base_backbone.py

52 lines
1.7 KiB
Python

from abc import ABCMeta, abstractmethod
from mmcv.runner import BaseModule
class BaseBackbone(BaseModule, metaclass=ABCMeta):
"""Base backbone.
This class defines the basic functions of a backbone. Any backbone that
inherits this class should at least define its own `forward` function.
"""
def __init__(self, init_cfg=None):
super(BaseBackbone, self).__init__(init_cfg)
# def init_weights(self, pretrained=None):
# """Init backbone weights.
# Args:
# pretrained (str | None): If pretrained is a string, then it
# initializes backbone weights by loading the pretrained
# checkpoint. If pretrained is None, then it follows default
# initializer or customized initializer in subclasses.
# """
# if isinstance(pretrained, str):
# logger = logging.getLogger()
# load_checkpoint(self, pretrained, strict=False, logger=logger)
# elif pretrained is None:
# # use default initializer or customized initializer in subclasses
# pass
# else:
# raise TypeError('pretrained must be a str or None.'
# f' But received {type(pretrained)}.')
@abstractmethod
def forward(self, x):
"""Forward computation.
Args:
x (tensor | tuple[tensor]): x could be a Torch.tensor or a tuple of
Torch.tensor, containing input data for forward computation.
"""
pass
def train(self, mode=True):
"""Set module status before forward computation.
Args:
mode (bool): Whether it is train_mode or test_mode
"""
super(BaseBackbone, self).train(mode)