mmpretrain/mmcls/models/heads/multi_label_head.py

54 lines
1.6 KiB
Python

import torch
import torch.nn.functional as F
from ..builder import HEADS, build_loss
from .base_head import BaseHead
@HEADS.register_module()
class MultiLabelClsHead(BaseHead):
"""Classification head for multilabel task.
Args:
loss (dict): Config of classification loss.
"""
def __init__(self,
loss=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=1.0),
init_cfg=None):
super(MultiLabelClsHead, self).__init__(init_cfg=init_cfg)
assert isinstance(loss, dict)
self.compute_loss = build_loss(loss)
def loss(self, cls_score, gt_label):
gt_label = gt_label.type_as(cls_score)
num_samples = len(cls_score)
losses = dict()
# map difficult examples to positive ones
_gt_label = torch.abs(gt_label)
# compute loss
loss = self.compute_loss(cls_score, _gt_label, avg_factor=num_samples)
losses['loss'] = loss
return losses
def forward_train(self, cls_score, gt_label):
gt_label = gt_label.type_as(cls_score)
losses = self.loss(cls_score, gt_label)
return losses
def simple_test(self, cls_score):
if isinstance(cls_score, list):
cls_score = sum(cls_score) / float(len(cls_score))
pred = F.sigmoid(cls_score) if cls_score is not None else None
if torch.onnx.is_in_onnx_export():
return pred
pred = list(pred.detach().cpu().numpy())
return pred