mmpretrain/configs/_base_/datasets/imagenet_bs32.py

48 lines
1.4 KiB
Python

# dataset settings
dataset_type = 'ImageNet'
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/classification/',
# 'data/': 's3://openmmlab/datasets/classification/'
# }))
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(256, -1), keep_ratio=True),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
dataset=dict(
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))
test_dataloader = val_dataloader
evaluation = dict(interval=1, metric='accuracy')