mmpretrain/tools/analysis_tools/eval_metric.py

72 lines
2.4 KiB
Python

import argparse
import mmcv
from mmcv import Config, DictAction
from mmcls.datasets import build_dataset
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate metric of the '
'results saved in pkl format')
parser.add_argument('config', help='Config of the model')
parser.add_argument('pkl_results', help='Results in pickle format')
parser.add_argument(
'--metrics',
type=str,
nargs='+',
help='Evaluation metrics, which depends on the dataset, e.g., '
'"accuracy", "precision", "recall" and "support".')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
assert args.metrics, (
'Please specify at least one metric the argument "--metrics".')
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# import modules from string list.
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
cfg.data.test.test_mode = True
dataset = build_dataset(cfg.data.test)
outputs = mmcv.load(args.pkl_results)
pred_score = outputs['class_scores']
kwargs = {} if args.eval_options is None else args.eval_options
eval_kwargs = cfg.get('evaluation', {}).copy()
# hard-code way to remove EvalHook args
for key in [
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule'
]:
eval_kwargs.pop(key, None)
eval_kwargs.update(dict(metric=args.metrics, **kwargs))
print(dataset.evaluate(pred_score, **eval_kwargs))
if __name__ == '__main__':
main()