mmpretrain/configs/_base_/models/resnet50_cifar_cutmix.py
whcao 3a08db9182
[Feature]Add augments to models/utils (#278)
* add mytrain.py for test

* test before layers

* test attr in layers

* test classifier

* delete mytrain.py

* add rand_bbox_minmax rand_bbox and cutmix_bbox_and_lam to BaseCutMixLayer

* add mixup_prob to BatchMixupLayer

* add cutmixup

* add cutmixup to __init__

* test classifier with cutmixup

* delete some comments

* set mixup_prob default to 1.0

* add cutmixup to classifier

* use cutmixup

* use cutmixup

* fix bugs

* test cutmixup

* move mixup and cutmix to augment

* inherit from BaseAugment

* add BaseAugment

* inherit from BaseAugment

* rename identity.py

* add @

* build augment

* register module

* rename to augment.py

* delete cutmixup.py

* do not inherit from BaseAugment

* add augments

* use augments in classifier

* prob default to 1.0

* add comments

* use augments

* use augments

* assert sum of augmentation probabilities should equal to 1

* augmentation probabilities equal to 1

* calculate Identity prob

* replace xxx with self.xxx

* add comments

* sync with augments

* for BC-breaking

* delete useless comments in mixup.py
2021-06-20 09:44:51 +08:00

19 lines
549 B
Python

# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet_CIFAR',
depth=50,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='MultiLabelLinearClsHead',
num_classes=10,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0, use_soft=True)),
train_cfg=dict(
augments=dict(type='BatchCutMix', alpha=1.0, num_classes=10,
prob=1.0)))