* remove basehead * add moco series * add byol simclr simsiam * add ut * update configs * add simsiam hook * add and refactor beit * update ut * add cae * update extract_feat * refactor cae * add mae * refactor data preprocessor * update heads * add maskfeat * add milan * add simmim * add mixmim * fix lint * fix ut * fix lint * add eva * add densecl * add barlowtwins * add swav * fix lint * update readtherdocs rst * update docs * update * Decrease UT memory usage * Fix docstring * update DALLEEncoder * Update model docs * refactor dalle encoder * update docstring * fix ut * fix config error * add val_cfg and test_cfg * refactor clip generator * fix lint * pass check * fix ut * add lars * update type of BEiT in configs * Use MMEngine style momentum in EMA. * apply mmpretrain solarize --------- Co-authored-by: mzr1996 <mzr1996@163.com> |
||
---|---|---|
.. | ||
benchmarks | ||
README.md | ||
metafile.yml | ||
mocov2_resnet50_8xb32-coslr-200e_in1k.py |
README.md
MoCoV2
Abstract
Contrastive unsupervised learning has recently shown encouraging progress, e.g., in Momentum Contrast (MoCo) and SimCLR. In this note, we verify the effectiveness of two of SimCLR’s design improvements by implementing them in the MoCo framework. With simple modifications to MoCo—namely, using an MLP projection head and more data augmentation—we establish stronger baselines that outperform SimCLR and do not require large training batches. We hope this will make state-of-the-art unsupervised learning research more accessible.

How to use it?
Predict image
from mmpretrain import inference_model
predict = inference_model('resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k', 'demo/bird.JPEG')
print(predict['pred_class'])
print(predict['pred_score'])
Use the model
import torch
from mmpretrain import get_model
model = get_model('mocov2_resnet50_8xb32-coslr-200e_in1k', pretrained=True)
inputs = torch.rand(1, 3, 224, 224)
out = model(inputs)
print(type(out))
# To extract features.
feats = model.extract_feat(inputs)
print(type(feats))
Train/Test Command
Prepare your dataset according to the docs.
Train:
python tools/train.py configs/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py
Test:
python tools/test.py configs/mocov2/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-994c4128.pth
Models and results
Pretrained models
Model | Params (M) | Flops (G) | Config | Download |
---|---|---|---|---|
mocov2_resnet50_8xb32-coslr-200e_in1k |
N/A | N/A | config | model | log |
Image Classification on ImageNet-1k
Model | Pretrain | Params (M) | Flops (G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|---|
resnet50_mocov2-pre_8xb32-linear-steplr-100e_in1k |
MOCOV2 | N/A | N/A | 67.50 | config | model | log |
Citation
@article{chen2020improved,
title={Improved baselines with momentum contrastive learning},
author={Chen, Xinlei and Fan, Haoqi and Girshick, Ross and He, Kaiming},
journal={arXiv preprint arXiv:2003.04297},
year={2020}
}