mmpretrain/tools/analysis_tools/analyze_results.py

122 lines
3.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from pathlib import Path
import mmcv
import mmengine
import torch
from mmengine import DictAction
from mmpretrain.datasets import build_dataset
from mmpretrain.structures import DataSample
from mmpretrain.visualization import UniversalVisualizer
def parse_args():
parser = argparse.ArgumentParser(
description='MMCls evaluate prediction success/fail')
parser.add_argument('config', help='test config file path')
parser.add_argument('result', help='test result json/pkl file')
parser.add_argument(
'--out-dir', required=True, help='dir to store output files')
parser.add_argument(
'--topk',
default=20,
type=int,
help='Number of images to select for success/fail')
parser.add_argument(
'--rescale-factor',
'-r',
type=float,
help='image rescale factor, which is useful if the output is too '
'large or too small.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def save_imgs(result_dir, folder_name, results, dataset, rescale_factor=None):
full_dir = osp.join(result_dir, folder_name)
vis = UniversalVisualizer()
vis.dataset_meta = {'classes': dataset.CLASSES}
# save imgs
dump_infos = []
for data_sample in results:
data_info = dataset.get_data_info(data_sample.sample_idx)
if 'img' in data_info:
img = data_info['img']
name = str(data_sample.sample_idx)
elif 'img_path' in data_info:
img = mmcv.imread(data_info['img_path'], channel_order='rgb')
name = Path(data_info['img_path']).name
else:
raise ValueError('Cannot load images from the dataset infos.')
if rescale_factor is not None:
img = mmcv.imrescale(img, rescale_factor)
vis.visualize_cls(
img, data_sample, out_file=osp.join(full_dir, name + '.png'))
dump = dict()
for k, v in data_sample.items():
if isinstance(v, torch.Tensor):
dump[k] = v.tolist()
else:
dump[k] = v
dump_infos.append(dump)
mmengine.dump(dump_infos, osp.join(full_dir, folder_name + '.json'))
def main():
args = parse_args()
cfg = mmengine.Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# build the dataloader
cfg.test_dataloader.dataset.pipeline = []
dataset = build_dataset(cfg.test_dataloader.dataset)
results = list()
for result in mmengine.load(args.result):
data_sample = DataSample()
data_sample.set_metainfo({'sample_idx': result['sample_idx']})
data_sample.set_gt_label(result['gt_label'])
data_sample.set_pred_label(result['pred_label'])
data_sample.set_pred_score(result['pred_score'])
results.append(data_sample)
# sort result
results = sorted(results, key=lambda x: torch.max(x.pred_score))
success = list()
fail = list()
for data_sample in results:
if (data_sample.pred_label == data_sample.gt_label).all():
success.append(data_sample)
else:
fail.append(data_sample)
success = success[:args.topk]
fail = fail[:args.topk]
save_imgs(args.out_dir, 'success', success, dataset, args.rescale_factor)
save_imgs(args.out_dir, 'fail', fail, dataset, args.rescale_factor)
if __name__ == '__main__':
main()