mirror of
https://github.com/open-mmlab/mmpretrain.git
synced 2025-06-03 14:59:18 +08:00
* [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
117 lines
4.4 KiB
Python
117 lines
4.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
from tempfile import TemporaryDirectory
|
|
from unittest import TestCase
|
|
from unittest.mock import ANY, MagicMock, patch
|
|
|
|
from mmcv.image import imread
|
|
|
|
from mmpretrain.apis import (ImageClassificationInferencer, ModelHub,
|
|
get_model, inference_model)
|
|
from mmpretrain.models import MobileNetV3
|
|
from mmpretrain.structures import DataSample
|
|
from mmpretrain.visualization import UniversalVisualizer
|
|
|
|
MODEL = 'mobilenet-v3-small-050_3rdparty_in1k'
|
|
WEIGHT = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/mobilenet-v3-small-050_3rdparty_in1k_20221114-e0b86be1.pth' # noqa: E501
|
|
CONFIG = ModelHub.get(MODEL).config
|
|
|
|
|
|
class TestImageClassificationInferencer(TestCase):
|
|
|
|
def test_init(self):
|
|
# test input BaseModel
|
|
model = get_model(MODEL)
|
|
inferencer = ImageClassificationInferencer(model)
|
|
self.assertEqual(model._config, inferencer.config)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
|
|
# test input model name
|
|
with patch('mmengine.runner.load_checkpoint') as mock:
|
|
inferencer = ImageClassificationInferencer(MODEL)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
mock.assert_called_once_with(ANY, WEIGHT, map_location='cpu')
|
|
|
|
# test input config path
|
|
inferencer = ImageClassificationInferencer(CONFIG.filename)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
|
|
# test input config object
|
|
inferencer = ImageClassificationInferencer(CONFIG)
|
|
self.assertIsInstance(inferencer.model.backbone, MobileNetV3)
|
|
|
|
# test specify weights
|
|
with patch('mmengine.runner.load_checkpoint') as mock:
|
|
ImageClassificationInferencer(MODEL, pretrained='custom.pth')
|
|
mock.assert_called_once_with(ANY, 'custom.pth', map_location='cpu')
|
|
|
|
def test_call(self):
|
|
img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
|
|
img = imread(img_path)
|
|
|
|
# test inference classification model
|
|
inferencer = ImageClassificationInferencer(MODEL)
|
|
results = inferencer(img_path)[0]
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|
|
|
|
# test return_datasample=True
|
|
results = inferencer(img, return_datasamples=True)[0]
|
|
self.assertIsInstance(results, DataSample)
|
|
|
|
def test_visualize(self):
|
|
img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
|
|
img = imread(img_path)
|
|
|
|
inferencer = ImageClassificationInferencer(MODEL)
|
|
self.assertIsNone(inferencer.visualizer)
|
|
|
|
with TemporaryDirectory() as tmpdir:
|
|
inferencer(img, show_dir=tmpdir)
|
|
self.assertIsInstance(inferencer.visualizer, UniversalVisualizer)
|
|
self.assertTrue(osp.exists(osp.join(tmpdir, '0.png')))
|
|
|
|
inferencer.visualizer = MagicMock(wraps=inferencer.visualizer)
|
|
inferencer(
|
|
img_path, rescale_factor=2., draw_score=False, show_dir=tmpdir)
|
|
self.assertTrue(osp.exists(osp.join(tmpdir, 'color.png')))
|
|
inferencer.visualizer.visualize_cls.assert_called_once_with(
|
|
ANY,
|
|
ANY,
|
|
classes=inferencer.classes,
|
|
resize=None,
|
|
show=False,
|
|
wait_time=0,
|
|
rescale_factor=2.,
|
|
draw_gt=False,
|
|
draw_pred=True,
|
|
draw_score=False,
|
|
name='color',
|
|
out_file=osp.join(tmpdir, 'color.png'))
|
|
|
|
|
|
class TestInferenceAPIs(TestCase):
|
|
|
|
def test_inference_model(self):
|
|
# test backward compatibility
|
|
img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
|
|
img = imread(img_path)
|
|
|
|
model = get_model(MODEL, pretrained=True)
|
|
results = inference_model(model, img_path)
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|
|
|
|
results = inference_model(model, img)
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|
|
|
|
# test input model name
|
|
results = inference_model(MODEL, img)
|
|
self.assertEqual(
|
|
results.keys(),
|
|
{'pred_score', 'pred_scores', 'pred_label', 'pred_class'})
|