mmpretrain/tests/test_models/test_utils/test_ema.py

49 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
from unittest import TestCase
import torch
import torch.nn as nn
from mmengine.logging import MessageHub
from mmengine.testing import assert_allclose
from mmpretrain.models.utils import CosineEMA
class TestEMA(TestCase):
def test_cosine_ema(self):
model = nn.Sequential(nn.Conv2d(1, 5, kernel_size=3), nn.Linear(5, 10))
# init message hub
max_iters = 5
test = dict(name='ema_test')
message_hub = MessageHub.get_instance(**test)
message_hub.update_info('max_iters', max_iters)
# test EMA
momentum = 0.996
end_momentum = 1.
ema_model = CosineEMA(model, momentum=1 - momentum)
averaged_params = [
torch.zeros_like(param) for param in model.parameters()
]
for i in range(max_iters):
updated_averaged_params = []
for p, p_avg in zip(model.parameters(), averaged_params):
p.detach().add_(torch.randn_like(p))
if i == 0:
updated_averaged_params.append(p.clone())
else:
m = end_momentum - (end_momentum - momentum) * (
math.cos(math.pi * i / float(max_iters)) + 1) / 2
updated_averaged_params.append(
(p_avg * m + p * (1 - m)).clone())
ema_model.update_parameters(model)
averaged_params = updated_averaged_params
for p_target, p_ema in zip(averaged_params, ema_model.parameters()):
assert_allclose(p_target, p_ema)