mmpretrain/tools/kfold-cross-valid.py

255 lines
8.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import os.path as osp
from mmengine.config import Config, ConfigDict, DictAction
from mmengine.dist import sync_random_seed
from mmengine.fileio import dump, load
from mmengine.hooks import Hook
from mmengine.runner import Runner, find_latest_checkpoint
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION
EXP_INFO_FILE = 'kfold_exp.json'
prog_description = """K-Fold cross-validation.
To start a 5-fold cross-validation experiment:
python tools/kfold-cross-valid.py $CONFIG --num-splits 5
To resume a 5-fold cross-validation from an interrupted experiment:
python tools/kfold-cross-valid.py $CONFIG --num-splits 5 --resume
""" # noqa: E501
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=prog_description)
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--num-splits',
type=int,
help='The number of all folds.',
required=True)
parser.add_argument(
'--fold',
type=int,
help='The fold used to do validation. '
'If specify, only do an experiment of the specified fold.')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--resume',
action='store_true',
help='Resume the previous experiment.')
parser.add_argument(
'--amp',
action='store_true',
help='enable automatic-mixed-precision training')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
parser.add_argument(
'--auto-scale-lr',
action='store_true',
help='whether to auto scale the learning rate according to the '
'actual batch size and the original batch size.')
parser.add_argument(
'--no-pin-memory',
action='store_true',
help='whether to disable the pin_memory option in dataloaders.')
parser.add_argument(
'--no-persistent-workers',
action='store_true',
help='whether to disable the persistent_workers option in dataloaders.'
)
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def merge_args(cfg, args):
"""Merge CLI arguments to config."""
if args.no_validate:
cfg.val_cfg = None
cfg.val_dataloader = None
cfg.val_evaluator = None
cfg.launcher = args.launcher
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# enable automatic-mixed-precision training
if args.amp is True:
optim_wrapper = cfg.optim_wrapper.get('type', 'OptimWrapper')
assert optim_wrapper in ['OptimWrapper', 'AmpOptimWrapper'], \
'`--amp` is not supported custom optimizer wrapper type ' \
f'`{optim_wrapper}.'
cfg.optim_wrapper.type = 'AmpOptimWrapper'
cfg.optim_wrapper.setdefault('loss_scale', 'dynamic')
# enable auto scale learning rate
if args.auto_scale_lr:
cfg.auto_scale_lr.enable = True
# set dataloader args
default_dataloader_cfg = ConfigDict(
pin_memory=True,
persistent_workers=True,
collate_fn=dict(type='default_collate'),
)
if digit_version(TORCH_VERSION) < digit_version('1.8.0'):
default_dataloader_cfg.persistent_workers = False
def set_default_dataloader_cfg(cfg, field):
if cfg.get(field, None) is None:
return
dataloader_cfg = copy.deepcopy(default_dataloader_cfg)
dataloader_cfg.update(cfg[field])
cfg[field] = dataloader_cfg
if args.no_pin_memory:
cfg[field]['pin_memory'] = False
if args.no_persistent_workers:
cfg[field]['persistent_workers'] = False
set_default_dataloader_cfg(cfg, 'train_dataloader')
set_default_dataloader_cfg(cfg, 'val_dataloader')
set_default_dataloader_cfg(cfg, 'test_dataloader')
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
return cfg
def train_single_fold(cfg, num_splits, fold, resume_ckpt=None):
root_dir = cfg.work_dir
cfg.work_dir = osp.join(root_dir, f'fold{fold}')
if resume_ckpt is not None:
cfg.resume = True
cfg.load_from = resume_ckpt
dataset = cfg.train_dataloader.dataset
# wrap the dataset cfg
def wrap_dataset(dataset, test_mode):
return dict(
type='KFoldDataset',
dataset=dataset,
fold=fold,
num_splits=num_splits,
seed=cfg.kfold_split_seed,
test_mode=test_mode,
)
train_dataset = copy.deepcopy(dataset)
cfg.train_dataloader.dataset = wrap_dataset(train_dataset, False)
if cfg.val_dataloader is not None:
if 'pipeline' not in cfg.val_dataloader.dataset:
raise ValueError(
'Cannot find `pipeline` in the validation dataset. '
"If you are using dataset wrapper, please don't use this "
'tool to act kfold cross validation. '
'Please write config files manually.')
val_dataset = copy.deepcopy(dataset)
val_dataset['pipeline'] = cfg.val_dataloader.dataset.pipeline
cfg.val_dataloader.dataset = wrap_dataset(val_dataset, True)
if cfg.test_dataloader is not None:
if 'pipeline' not in cfg.test_dataloader.dataset:
raise ValueError(
'Cannot find `pipeline` in the test dataset. '
"If you are using dataset wrapper, please don't use this "
'tool to act kfold cross validation. '
'Please write config files manually.')
test_dataset = copy.deepcopy(dataset)
test_dataset['pipeline'] = cfg.test_dataloader.dataset.pipeline
cfg.test_dataloader.dataset = wrap_dataset(test_dataset, True)
# build the runner from config
runner = Runner.from_cfg(cfg)
runner.logger.info(
f'----------- Cross-validation: [{fold+1}/{num_splits}] ----------- ')
runner.logger.info(f'Train dataset: \n{runner.train_dataloader.dataset}')
class SaveInfoHook(Hook):
def after_train_epoch(self, runner):
last_ckpt = find_latest_checkpoint(cfg.work_dir)
exp_info = dict(
fold=fold,
last_ckpt=last_ckpt,
kfold_split_seed=cfg.kfold_split_seed,
)
dump(exp_info, osp.join(root_dir, EXP_INFO_FILE))
runner.register_hook(SaveInfoHook(), 'LOWEST')
# start training
runner.train()
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
# merge cli arguments to config
cfg = merge_args(cfg, args)
# set the unify random seed
cfg.kfold_split_seed = args.seed or sync_random_seed()
# resume from the previous experiment
if args.resume:
experiment_info = load(osp.join(cfg.work_dir, EXP_INFO_FILE))
resume_fold = experiment_info['fold']
cfg.kfold_split_seed = experiment_info['kfold_split_seed']
resume_ckpt = experiment_info.get('last_ckpt', None)
else:
resume_fold = 0
resume_ckpt = None
if args.fold is not None:
folds = [args.fold]
else:
folds = range(resume_fold, args.num_splits)
for fold in folds:
cfg_ = copy.deepcopy(cfg)
train_single_fold(cfg_, args.num_splits, fold, resume_ckpt)
resume_ckpt = None
if __name__ == '__main__':
main()