mmpretrain/configs/blip/blip-base_8xb32_vqa.py

77 lines
2.3 KiB
Python

_base_ = [
'../_base_/datasets/coco_vg_vqa.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='BlipVQA',
tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'),
vision_backbone=dict(
type='VisionTransformer',
arch='b',
img_size=480,
patch_size=16,
out_type='raw'),
multimodal_backbone=dict(
type='XBertEncoder',
med_config=dict(
architectures=['BertModel'],
attention_probs_dropout_prob=0.1,
hidden_act='gelu',
hidden_dropout_prob=0.1,
hidden_size=768,
initializer_range=0.02,
intermediate_size=3072,
layer_norm_eps=1e-12,
max_position_embeddings=512,
model_type='bert',
num_attention_heads=12,
num_hidden_layers=12,
pad_token_id=0,
add_type_embeddings=False,
vocab_size=30524,
encoder_width=768,
add_cross_attention=True),
),
head=dict(
type='VQAGenerationHead',
decoder=dict(
type='XBertLMHeadDecoder',
med_config=dict(
architectures=['BertModel'],
attention_probs_dropout_prob=0.1,
hidden_act='gelu',
hidden_dropout_prob=0.1,
hidden_size=768,
initializer_range=0.02,
intermediate_size=3072,
layer_norm_eps=1e-12,
max_position_embeddings=512,
model_type='bert',
num_attention_heads=12,
num_hidden_layers=12,
pad_token_id=0,
add_type_embeddings=False,
vocab_size=30524,
encoder_width=768,
add_cross_attention=True),
),
inference_method='rank', # or 'generate'
answer_list_path=
'https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json', # noqa: E501
),
)
# schedule settings
optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.05)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)]
train_cfg = dict(max_epochs=10, by_epoch=True)
test_cfg = dict()
# runtime settings
randomness = dict(seed=42)