77 lines
2.3 KiB
Python
77 lines
2.3 KiB
Python
_base_ = [
|
|
'../_base_/datasets/coco_vg_vqa.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='BlipVQA',
|
|
tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'),
|
|
vision_backbone=dict(
|
|
type='VisionTransformer',
|
|
arch='b',
|
|
img_size=480,
|
|
patch_size=16,
|
|
out_type='raw'),
|
|
multimodal_backbone=dict(
|
|
type='XBertEncoder',
|
|
med_config=dict(
|
|
architectures=['BertModel'],
|
|
attention_probs_dropout_prob=0.1,
|
|
hidden_act='gelu',
|
|
hidden_dropout_prob=0.1,
|
|
hidden_size=768,
|
|
initializer_range=0.02,
|
|
intermediate_size=3072,
|
|
layer_norm_eps=1e-12,
|
|
max_position_embeddings=512,
|
|
model_type='bert',
|
|
num_attention_heads=12,
|
|
num_hidden_layers=12,
|
|
pad_token_id=0,
|
|
add_type_embeddings=False,
|
|
vocab_size=30524,
|
|
encoder_width=768,
|
|
add_cross_attention=True),
|
|
),
|
|
head=dict(
|
|
type='VQAGenerationHead',
|
|
decoder=dict(
|
|
type='XBertLMHeadDecoder',
|
|
med_config=dict(
|
|
architectures=['BertModel'],
|
|
attention_probs_dropout_prob=0.1,
|
|
hidden_act='gelu',
|
|
hidden_dropout_prob=0.1,
|
|
hidden_size=768,
|
|
initializer_range=0.02,
|
|
intermediate_size=3072,
|
|
layer_norm_eps=1e-12,
|
|
max_position_embeddings=512,
|
|
model_type='bert',
|
|
num_attention_heads=12,
|
|
num_hidden_layers=12,
|
|
pad_token_id=0,
|
|
add_type_embeddings=False,
|
|
vocab_size=30524,
|
|
encoder_width=768,
|
|
add_cross_attention=True),
|
|
),
|
|
inference_method='rank', # or 'generate'
|
|
answer_list_path=
|
|
'https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json', # noqa: E501
|
|
),
|
|
)
|
|
|
|
# schedule settings
|
|
optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.05)
|
|
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
|
|
|
param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)]
|
|
|
|
train_cfg = dict(max_epochs=10, by_epoch=True)
|
|
test_cfg = dict()
|
|
|
|
# runtime settings
|
|
randomness = dict(seed=42)
|