mmpretrain/configs/mocov2/mocov2_resnet50_8xb32-coslr...

35 lines
894 B
Python

_base_ = [
'../_base_/datasets/imagenet_bs32_mocov2.py',
'../_base_/schedules/imagenet_sgd_coslr_200e.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='MoCo',
queue_len=65536,
feat_dim=128,
momentum=0.001,
backbone=dict(
type='ResNet',
depth=50,
norm_cfg=dict(type='BN'),
zero_init_residual=False),
neck=dict(
type='MoCoV2Neck',
in_channels=2048,
hid_channels=2048,
out_channels=128,
with_avg_pool=True),
head=dict(
type='ContrastiveHead',
loss=dict(type='CrossEntropyLoss'),
temperature=0.2))
# only keeps the latest 3 checkpoints
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=256)