mmpretrain/tools/model_converters/davit_to_mmpretrain.py

88 lines
3.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmengine
import torch
from mmengine.runner import CheckpointLoader
def convert_davit(ckpt):
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
new_v = v
if k.startswith('patch_embeds.0'):
new_k = k.replace('patch_embeds.0', 'patch_embed')
new_k = new_k.replace('proj', 'projection')
elif k.startswith('patch_embeds'):
if k.startswith('patch_embeds.1'):
new_k = k.replace('patch_embeds.1', 'stages.0.downsample')
elif k.startswith('patch_embeds.2'):
new_k = k.replace('patch_embeds.2', 'stages.1.downsample')
elif k.startswith('patch_embeds.3'):
new_k = k.replace('patch_embeds.3', 'stages.2.downsample')
new_k = new_k.replace('proj', 'projection')
elif k.startswith('main_blocks'):
new_k = k.replace('main_blocks', 'stages')
for num_stages in range(4):
for num_blocks in range(9):
if f'{num_stages}.{num_blocks}.0' in k:
new_k = new_k.replace(
f'{num_stages}.{num_blocks}.0',
f'{num_stages}.blocks.{num_blocks}.spatial_block')
elif f'{num_stages}.{num_blocks}.1' in k:
new_k = new_k.replace(
f'{num_stages}.{num_blocks}.1',
f'{num_stages}.blocks.{num_blocks}.channel_block')
if 'cpe.0' in k:
new_k = new_k.replace('cpe.0', 'cpe1')
elif 'cpe.1' in k:
new_k = new_k.replace('cpe.1', 'cpe2')
if 'mlp' in k:
new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0')
new_k = new_k.replace('mlp.fc2', 'ffn.layers.1')
if 'spatial_block.attn' in new_k:
new_k = new_k.replace('spatial_block.attn',
'spatial_block.attn.w_msa')
elif k.startswith('norms'):
new_k = k.replace('norms', 'norm3')
elif k.startswith('head'):
new_k = k.replace('head', 'head.fc')
else:
new_k = k
if not new_k.startswith('head'):
new_k = 'backbone.' + new_k
new_ckpt[new_k] = new_v
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in pretrained davit '
'models to mmpretrain style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
weight = convert_davit(state_dict)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
print('Done!!')
if __name__ == '__main__':
main()