mmpretrain/tools/torchserve/mmpretrain_handler.py

69 lines
2.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import base64
import os
import mmcv
import numpy as np
import torch
from ts.torch_handler.base_handler import BaseHandler
import mmpretrain.models
from mmpretrain.apis import (ImageClassificationInferencer,
ImageRetrievalInferencer, get_model)
class MMPreHandler(BaseHandler):
def initialize(self, context):
properties = context.system_properties
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = torch.device(self.map_location + ':' +
str(properties.get('gpu_id')) if torch.cuda.
is_available() else self.map_location)
self.manifest = context.manifest
model_dir = properties.get('model_dir')
serialized_file = self.manifest['model']['serializedFile']
checkpoint = os.path.join(model_dir, serialized_file)
self.config_file = os.path.join(model_dir, 'config.py')
model = get_model(self.config_file, checkpoint, self.device)
if isinstance(model, mmpretrain.models.ImageClassifier):
self.inferencer = ImageClassificationInferencer(model)
elif isinstance(model, mmpretrain.models.ImageToImageRetriever):
self.inferencer = ImageRetrievalInferencer(model)
else:
raise NotImplementedError(
f'No available inferencer for {type(model)}')
self.initialized = True
def preprocess(self, data):
images = []
for row in data:
image = row.get('data') or row.get('body')
if isinstance(image, str):
image = base64.b64decode(image)
image = mmcv.imfrombytes(image)
images.append(image)
return images
def inference(self, data, *args, **kwargs):
results = []
for image in data:
results.append(self.inferencer(image)[0])
return results
def postprocess(self, data):
processed_data = []
for result in data:
processed_result = {}
for k, v in result.items():
if isinstance(v, (torch.Tensor, np.ndarray)):
processed_result[k] = v.tolist()
else:
processed_result[k] = v
processed_data.append(processed_result)
return processed_data